
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Efficient Unmanned Aerial Systems Navigation with
Collision Avoidance in Dense Urban Environments

Josh Bertram, Graduate Student Member, IEEE, Joseph Zambreno, Senior Member, IEEE
and Peng Wei, Member, IEEE

Abstract—Unmanned Aerial Systems (UAS) are an emerging
type of airborne traffic under active research expected to carry
cargo and passengers in the future over dense population centers.
One challenge is identifying algorithms which can compactly
represent and navigate the available airspace while avoiding
conflict with buildings and other UAS. In this paper, we ex-
plore a decentralized method coupling a medial axis graph for
global navigation through the city with local collision avoidance
of buildings and other UAS to obtain collision-free efficient
navigation through an urban environment. We study trade-
offs of using Optimal Reciprocal Collision Avoidance (ORCA),
Rapidly-exploring Random Trees (RRT and RRT*), and Fast
Markov Decision Process (FastMDP) as the collision avoidance
algorithms. We examine low-altitude UAS navigating through
a portion of New York City dense with skyscrapers to study
the effectiveness of the algorithms in a challenging environment.
We show that ORCA, RRT, RRT*, and FastMDP all are fairly
efficient for 2D problems, but as the problem becomes more
realistic (3D, constrained motion, aware of other UAS), FastMDP
provides the best overall performance among the four algorithms
studied.

Index Terms—Collision avoidance, Markov Decision Process.

I. INTRODUCTION

Unmanned Aerial Systems (UAS) including package de-
livery drones, air-taxis, and similar aircraft are envisioned
for Urban Air Mobility (UAM) [1]–[5] and Advanced Air
Mobility (AAM) applications [6] where aircraft fly between
specially designed vertiports which will allow vertical take-off
and landing (VTOL) aircraft to safely ascend and land in urban
environments. Many papers focus on aircraft navigating be-
tween these vertiports over large areas on the order of the size
of a metropolis area or between cities. [7]–[14] In this paper,
we examine navigation through a city where UAS may need to
fly between and around building in a dense urban environment
such as New York City. While the regulatory environment may
not be ready to approve operators openly flying small UAS
or larger air-taxis near or between buildings anytime soon, we
imagine that trusted emergency services operators (e.g., police,
fire, disaster response) in urban areas may be granted special
privileges to perform operations in dense urban environments
like New York City. Current events also suggest that in war-
torn areas such as Ukraine, humanitarian aid workers might
benefit from UAS which could navigate war-torn cities in an
effort to identify survivors. For these reasons we still believe

J. Bertram and J. Zambreno are with the Department of Electrical and
Computer Engineering, Iowa State University, Ames, IA, 50011 USA e-mail:
bertram1@iastate.edu, zambreno@iastate.edu.

P. Wei is with George Washington University. email: pwei@gwu.edu.

that this concept is worth exploring as we hope it may inform
future related research.

In this paper, we break the problem into a “global” path
planning problem through the city, and a “local” collision
avoidance problem with buildings and aircraft. The contribu-
tions of this paper are:

1) development of a method to traverse a dense urban
environment using the medial axis of a polygon-with-
holes representation of the buildings,

2) efficient waypoint sequencing along the shortest paths
constructed from the medial axis graph

3) extension of the FastMDP algorithm to polygon-shaped
obstacles including formal proofs, and

4) comparison of performance of ORCA [15], RRT [16],
RRT* [17], and FastMDP [18] for the local collision
avoidance problem.

We direct the reader to [19] which is an excellent sur-
vey paper covering the problem background and approaches
that have been used for path planning, collision avoidance,
and trajectory optimization. Within the framework described
by the survey paper, we note generally that the FastMDP
algorithm can be understood as having a receding horizon
similar to Model Predictive Control [20], [21] where the
objective function being maximized is the value function for
an underlying Markov Decision Process (MDP) [22], [23], and
the resulting trajectory follows the optimal policy of the MDP.
Note that MDP-based approaches do not explicitly separate the
problem into path planning, collision avoidance, and trajectory
optimization, but instead solves all three simultaneously. In
this paper, FastMDP is used to solve collision avoidance and
trajectory optimization as a combined problem leaving path
planning through the city to a higher level algorithm.

This work differs from other related papers as follows. In
[24], navigation through an indoor environment with static
and moving obstacles is performed using an optimal control
approach. To simplify the problem, obstacles were identified,
clustered, and modelled as rectangular prisms which is a
compatible assumption for an indoor building environment
where many walls and obstacles are rectangular in nature. The
algorithm optimally avoids obstacles, minimizing deviations
from a human generated flight path provided as a set of
waypoints with computations taking on the order of 80 to
120 ms. In this paper, we show a method to handle more
complex obstacles modelled as convex polygons and generate
the waypoints through a graph representing the city.

In [25], flight planning for UAS performing building inspec-
tions is examined. Flight paths are pre-computed from building

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2

information data files which describe construction plans for
a building and allow a set of waypoints to be constructed
from points of interest input by the operator. A voxel based
occupancy grid is constructed to identify a collision free space
to operate within. The grid is converted to a graph, and A*
search is used to compute a flight path where the result favors
slow, careful movements around a building for safe and steady
operation of the on-board inspection cameras.

In [26], a similar approach is used to this paper where a
polygon-straight skeleton is found for an environment with
rectangular obstacles, and the skeleton is then used as a seed
for improving the performance of RRT. In this work, rather
than using the skeleton to improve RRT performance in finding
a solution for the global problem, we instead use the skeleton
to provide waypoints for a simpler problem to the local path
planner. Additionally, we exploit the radii of the skeleton for
improved waypoint sequencing during flight, which may allow
for improved path generation.

In [27], a UAV is provided a voxel map as an occupancy
grid, and uses A* search at each time step to compute a
reference path that will achieve high-level goals (e.g., reaching
a set of goal locations) and the reference path is provided to
an underlying Model Predictive Control module to compute a
trajectory. Trajectory optimization is performed and regulates
the UAVs speed, for example, by slowing down as buildings
are approached. Several tuning parameters are provided that
allow the designer to tune the risk taking behavior of the UAV
as it prosecutes its mission, with the desired behavior of the
UAVs being a “tactical” behavior where the UAV will sneak
slowly along building walls and wish dash across open areas in
order to remain better concealed. In this paper, we assume that
the building layout is known a priori, and we then pre-compute
a data structure from the medial axis graph which allows
for efficient lookup of shortest path while in flight. We note
that generally speaking MDP-based methods simultaneously
solve the path planning, collision avoidance, and trajectory
optimization problems and in this paper we use FastMDP,
ORCA, RRT, and RRT* to perform collision avoidance and
trajectory generation. Note that nothing precludes the use of
a trajectory optimization algorithm underneath FastMDP, but
doing so is out of scope for this paper.

The paper is organized as follows: Section II discusses the
algorithms evaluated in this paper, Section III develops the
approach used in solving the problem including extending
the FastMDP algorithm to polygonal obstacles, Section IV
describes the simulation environment based on a portion of
New York City, Section V describes the test results, and
Section VI provides concluding remarks.

II. BACKGROUND

Optimal Reciprocal Collision Avoidance (ORCA) [15] is a
well known algorithm that performs collision avoidance by
computing regions which could potentially be occupied by
other agents (velocity obstacles) and then selects a velocity for
the agent which is outside the occupied area of all other agents.
ORCA assumes agents are holonomic, can instantaneously
change velocity in any direction, and is optimal under the

assumption that all other agents are also using ORCA. ORCA
is used in this paper as a representation of what optimal
or nearly-optimal collision avoidance with respect to other
aircraft might look like as a useful comparison data point for
the other algorithms.

Rapidly-exploring Random Trees (RRT) [16] is a well-
known algorithm from robotics than uses a random sampling
approach to expand a tree of future states out from the initial
state until a goal state is reached. An extension to RRT known
as RRT* (pronounced “RRT-star”) [17] improves upon the
paths generated by RRT by periodically performing a limited
rebalancing of the tree known as “rewiring” which leads
to smoother, simpler paths through the space. RRT and its
variants are normally used for path-finding problems through
complex environments with many difficult obstacles to avoid.
RRT and RRT* are good algorithms to compare with as they
should do an excellent job of avoiding buildings and aircraft,
but with increasing computational cost as the tree becomes
more complex. RRT and RRT* are both capable of solving our
“global” path planning problem, but would require a very large
amount of time to do so (minutes in our early experiments.)

FastMDP [18], [28] is a recently proposed algorithm which
solves a limited subclass of Markov Decision Processes
(MDPs) [22], [23] and has been applied to numerous aerospace
related problems [29]–[34], notably including collision avoid-
ance. FastMDP exploits special structure present in the solu-
tion of the MDP (the value function) and uses this structure to
compute the solution of the MDP very quickly (usually dozens
or hundreds of milliseconds.) One of FastMDP’s limitations
is that it requires an efficient distance metric (one which can
be computed quickly with low computational cost) through
the MDP’s transition function, which for simple environments
may be an L1 (Manhattan) or L2 (Euclidean) norm. Thus, it is
difficult to apply FastMDP to the urban environment problem
examined in this paper, as there is no easy-to-compute norm
through the environment.

The difficult nature of this problem requires some additional
framework for these algorithms to be used effectively.

III. APPROACH

In this paper, we break the problem into a “global” approach
which finds a good path through the city from a starting
location to a goal location represented as series of waypoints,
and a “local” approach which then avoids collisions while
navigating to the next waypoint. At each time step of the
simulation, the “local” problem is re-solved using the current
state of the environment, resulting in a receding horizon-like
approach which can adapt to the unknown future positions of
other aircraft.

Buildings are represented as convex polygons derived from
floor plans of 3D models of New York City buildings available
from [35]. A polygon-with-holes is defined by a bounding
polygon large enough to contain all of the building polygons;
the building polygons are then treated as holes within the
bounding polygon. Given a convex polygon with convex holes,
the polygon’s medial axis can be found, which is the set of
points in the polygon’s interior which are equidistant from at

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 3

Fig. 1. Medial Axis With Radii Shown - Basis for Medial Axis Graph. Radii
shown as shaded gray circles which occur only within the free space (shaded
white.)

least two of the polygon’s sides. The medial axis (or “straight
skeleton”) is a well known concept from computational ge-
ometry [36] and has been used for indoor navigation [37],
computer aided drafting/modelling [38], and generating virtual
endoscopy of colonoscopy scans for radiologists [39]. There
are many ways to compute and interpret the medial axis; see
[38], [40] for an overview and details. The medial axis can
be defined using line segments, but an alternative way of
representing it is as a graph, which we will refer to as the
medial axis graph (MAG), where the nodes of the graph are
endpoints of the medial axis line segments, and edges of the
graph describe connected endpoints and correspond to the line
segments. See Figure 2 for an example medial axis derived
from our polygonal building representations. Each node of
the MAG also is assigned a radius, which is the distance
to the nearest point on the boundary (interior or exterior) of
the polygon-with-holes. The nodes with their radius can be
viewed as “supports” for the skeleton and contain all of the
information needed to reconstruct both the skeleton and the
polygon itself [38]. See Figure 1 for an illustration of the
medial axis with radii depicted as gray circles centered around
their corresponding node.

The medial axis can be computed by computational geom-
etry packages such as CGAL [41], though for large number
of polygons the time to find the medial axis can be large
– too long for generation at run-time. (In our case, it took
approximately 5 hours to precompute the MAG. We believe
that MAG computation should also be able to be accelerated
on GPU to reduce the MAG computation time significantly,
but did not explore that idea under this paper’s scope.) Thus,
for our problem we pre-compute the MAG and then also pre-
compute the pair-wise distances through the MAG for every
pair of nodes. Thus, given any node of the MAG, we can use
a lookup table to find the distance to any other node and can
perform simple operations such as finding the next closest
node along the shortest path from a start to and end node.

Fig. 2. Medial Axis of Area Between Buildings in an Urban Environment.
Buildings are shaded red, the free space is shaded white, and the medial axis
is shown as blue line segments.

This forms the basis of our approach’s ability to navigate our
city. While we only examine a small area of New York City
in this paper, without loss of generality, this approach could
easily be extended to a tile-based approach where the MAG
for the current area of the city being traversed is loaded. Note
also that while we start with 3D building models, we found
it computationally expensive to compute the MAG in 3D and
have simplified path planning problem between the buildings
to a 2D problem. The MAG is used to efficiently identify
the regions of free space which can be safely navigated by the
UAV, but the algorithms are free to then navigate that obstacle-
free space in 3D (at least, the FastMDP, and 3D versions
of RRT and RRT*.) While not addressed in this paper, it
would be a straightforward extension to compute the MAG
at different altitudes as “MAG slices” and then link the MAG
slices together in order to allow the UAVs to navigate over the
top of shorter buildings.

Given a start location we find the closest node of the MAG
(the “start node”), and then given the goal location, we find the
closest node of the MAG (the “exit node”) and can then easily
compute the distance from the start to the goal through the
MAG. Starting with the start node, we use the next node in the
shortest path through the graph as our waypoint for the “local”
problem. As we approach the waypoint, we reach a threshold
where we can sequence the waypoint to the next waypoint
along the shortest path. Recall that each node of the MAG has
a radius; this radius is used as the threshold for sequencing
the next waypoint. Moreover, if we are ever within the radius
of any MAG node, it is safe to sequence to the next waypoint.
This leads to the waypoint sequence logic of Algorithm 1.
Thus, the local collision avoidance algorithm is provided with
an intermediate goal which is “ahead” of the agent along the
shortest path to the goal. ORCA and RRT/RRT* can consume
this intermediate goal directly, but FastMDP requires extension
in order to deal with polygonal negative rewards, which we
develop next.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 4

A. FastMDP and Negative Reward Regions

FastMDP has previously been shown to perform collision
avoidance of aircraft, but in prior work FastMDP could only
handle “point source” rewards where positive and negative
rewards occur at specific points in the state space. A CPU and
GPU version of FastMDP have been explored in prior papers.
The CPU version of FastMDP used in this paper was shown
to have computational complexity of O(|R|×|A|×|D|) where
|R| is the number of discrete rewards in the reward function,
|A| is the number of actions (or control inputs) that the agent
can take at each time step, and |D| is the number of discrete
time steps in the receding horizon problem. In this work, we
extend FastMDP to handle polygon-shaped negative rewards
and use these to represent collisions with buildings. This is
a useful extension to FastMDP which has broader impacts
to other types of obstacles in the environment which may
also be represented with polygons, such as weather, but we
leave those other applications to future work. We now extend
the FastMDP formalism in [28] from point source rewards to
polygonal rewards.

Formally, let us define a distance function δ(s, si) as the
minimum number of actions a ∈ A needed to reach state
si ∈ S starting from state s ∈ S:

δ(s, si) = min
t
{t | T (s, a1, a2, · · · , at = si}, (1)

where a1, a2, · · · , at represent a sequence of actions taken at
each time step, and T (s, a1, · · · , at) represents the transition
function applied at each time step t using the sequence of
actions starting at state s.

We define a region of negative reward as a set Di where
an indicator function I is defined such that I(si) = 1 for all
si ∈ S which lie within the boundary of Di and otherwise
zero. We likewise define the MDP reward function such that
R(si) = rd,∀si ∈ Di, otherwise 0, where rd < 0 is a negative,
scalar value. Let Si = {si ∈ S | I(si) = 1} be the set of states
within the boundary of the region.

Let SZ = {s ∈ S | RDi(s) = 0} be the set of all
states where zero reward is obtained. Now, let S− = {s ∈
S | RDi

(s) < 0} be the set of all states where negative
reward is received (that is, the set of states that lie within
region Di.) Let us denote the set of all states k steps from SZ

as Sk = {s ∈ S | minsz∈SZ δ(s, sz) = k} where k ≥ 0 is
an integer, with S0 = {SZ}, S1 with all states one step from
SZ , etc. For any k > 0, Sk ⊂ S− and S− = ∪K

k=1S
k. For

any bounded, non-infinite region Di, note that k is bounded by
some integer K = maxs∈S−,sz∈SZ δ(s, sz) which represents
the maximum number of steps required to reach S0 from
any s ∈ S−. By definition, the reward received at any state

Algorithm 1 Waypoint Sequencing through the MAG
1: procedure SEQUENCEWAYPOINT(current position)
2: dwaypoint ← ∥current position− waypoint.position∥2
3: while dwaypoint < waypoint.radius do
4: waypoint← next closest waypoint in MAG
5: dwaypoint ← ∥current position− waypoint.position∥2
6: end while
7: end procedure

s0 ∈ SZ is 0 and the reward received for any state sk ∈ Sk

with k > 1 is the negative reward rd < 0.
Let us assume a set of states T = {s1, s2, s3, · · · , sN}

which form a trajectory through the state space S at time
steps t = {1, · · · , N}. From standard MDP literature, let us
define the future discounted return over a trajectory T as G =∑N

i=1 γ
iRi, where 0 < γ < 1 is known as the discount factor

of the infinite horizon MDP and Ri is the reward obtained at
each time step.

Lemma 1. For an MDP containing only a region of negative
reward Di, the optimal action from S0 is to remain in S0

resulting in a return of: G0 =
∑N

i=1 γ
i ·Ri = 0.

Proof. Assume that we begin at a state s0 ∈ S0. If we take
an action a ∈ A and transition to a next state s′ ∈ S, there
are two possible outcomes:

s′ ∈

{
S0 if T (s0, a) ∈ S0

Sk, k > 0 otherwise.
(2)

Recall that S0 = SZ and that the reward received at state
sz ∈ SZ is 0, and the reward received in Sk, k > 1 is a
negative reward rd < 0. If we consider an infinite trajectory
of states T0 = {s1, s2, · · · , sN | si ∈ SZ , ∀ i ∈ {1, · · · , N}}
that all lie within S0, then the reward received at each step is
Ri = 0, and the future discounted return of the trajectory is:

GT0
=

N∑
i=1

γi ·Ri =

N∑
i=1

γi · 0 = 0. (3)

If we consider an infinite trajectory of states T1 =
{s1, s2, · · · , sN | ∃ si ∈ S−, ∀ i ∈ {1, · · · , N}} where one
or more states lie within S−, then the reward received at each
state within S− is the negative reward rd < 0:

GT1
=

N∑
i=1

γi ·Ri

=

j∑
i=1

γi · 0 +
k∑

i=j

γi · rd +
m∑
i=k

γi · 0,
(4)

and the future discounted return of the trajectory is guaran-
teed to be less than GT0 :

GT0
> GT1

N∑
i=1

γi ·Ri >

N∑
i=1

γi ·Ri

N∑
i=1

γi · 0 >

j∑
i=1

γi · 0 +
k∑

i=j

γi · rd +
m∑
i=k

γi · 0

0 >

k∑
i=j

γi · rd

(5)

Therefore, if we start at some state s0 ∈ S0, then the
optimal action a∗ ∈ A is one which leads to maximum
future expected return, namely trajectory T0. Thus we can
say that S0 is absorbing, as once entering S0 the optimal
action is to remain in S0. An infinite trajectory starting
within S0 then always stays within S0 leading to a return

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5

of G0 =
∑∞

i=0 γ
i0 = 0. Moreover, any trajectory that

traverses only states in S0 has a return which we will denote
G0 = GT0 =

∑N
i=1 γ

i ·Ri = 0.

Lemma 2. For an MDP containing only one region of negative
reward Di, the optimal trajectory from a state sk ∈ Sk, k > 0
is to move to a state s0 ∈ S0 in a minimal number of actions:

T ∗
k = min

t
{t | T (s, a1, a2, · · · , at) = s0 ∈ S0}, (6)

Proof. Assume that the initial state sk ∈ Sk with k = 1 and
taking an action a ∈ A which leads to a next state s′ ∈ S.
The following transitions are possible:

s′ ∈


S0 if T (sk, a) ∈ S0 (Case A)
S1 if T (sk, a) ∈ S1 (Case B)
Sk, k > 1 otherwise (Case C).

(7)

Lemma 1 shows that S0 is absorbing and has a return G0 =
0, thus for Case A the return would be GA = rd+γ ·G0 = rd,
with rd < 0. For Case B, if we temporarily denote the return
starting from sk, k = 1 as G1, then the return of Case B is
defined recursively as GB = rd + γG1 as we return back to
S1. While the return of G1 is currently unspecified, it is clear
that GB < GA and therefore Case B is not optimal as at
best we added one additional step before reaching S0 which
only serves to reduce our return. For Case C, we see a similar
situation as any Sk, k > 1 implies that the distance to S0 has
increased, meaning that the return has at least k rd terms in
it: GC = rd + · · · γi · rd +G0. Therefore, Case C is also not
optimal. Thus, for sk ∈ Sk, k = 1, the optimal action is to
transition to S0 for a return of G1 = rd + γ ·G0.

Now consider starting from some sk ∈ Sk, k > 1 and taking
an action a ∈ A leading to a next state s′ ∈ S. Possible
outcome are:

s′ ∈


Sj , j < k if T (sk, a) ∈ Sj , j < k (Case A)
Sk if T (sk, a) ∈ Sk (Case B)
Sm,m > k otherwise (Case C).

(8)

Following similar logic, for Case A, this results in a return
of GA = rd + γ · Gj . For Case B, if we temporarily denote
the return starting from sk ∈ Sk as Gk, then the return of
Case B is defined recursively as GB = rd + γ · Gk as we
return to Sk. While the return of Gk is currently unspecified,
it is clear that GB < GA and therefore Case B is not optimal.
For Case C, Sm,m > k implies that the distance to S0 has
increased, meaning that the return has at least k rd terms in
it: GC = rd + · · · + γi · rd + Gk. Therefore, Case C is also
not optimal. Thus, at each level Sk we find that the optimal
action is to take the action that reduces k. Given that Sk is
defined in terms of the minimum number of actions it takes to
reach S0, it is therefore only possible to reduce k by 1 at each
step, and the optimal trajectory then steps down from higher
levels of Sk to S0 and is then:

T ∗
k = {sk ∈ Sk, sk−1 ∈ Sk−1, · · · , s0 ∈ S0, s0 ∈ S0, · · · }
= min

t
{t | T (s, a1, a2, · · · , at) = s0 ∈ S0},

(9)

noting again that once S0 is reached, it is an absorbing state
with return G0 = 0.

Corollary 1. For an MDP containing only a region of negative
reward Di, starting from a state sk ∈ Sk, k > 0 the future
discounted return is: Gk =

∑k
i=0 γ

i · rd.

Proof. The proof is a straightforward application of Lemma
2:

Gk = R(sk) + · · ·+ γR(s1) + γR(s0) + · · · γR(s0)

= rd + γrd + · · ·+ γkrd + γk+10 + · · · γk+n0

= rd +

k∑
i=1

γi · rd + 0

=

k∑
i=0

γi · rd

(10)

Definition 1. Let us now define the k-distance function Ki(s),
which returns for a given state s ∈ S the value of k for which
the state belongs in Sk with respect to region Di, then we may
define the value function as follows.

Corollary 2. For an MDP containing only a region of negative
reward Di, the value function V ∗(s) for any state s ∈ S is:
V ∗(s) = GKi(s)

Proof. The value function is defined as the future expected
reward starting at each state s ∈ S. Lemma 1 defined the return
G0 for states s ∈ S0 and Lemma 2 define the return Gk for
states s ∈ Sk, k > 0. As S = ∪N

i=0S
k and k = K(s) provides

which Sk the state s belongs to, then V ∗(s) = GK(s).

Consider an MDP with two regions of negative reward, Di

and Dj . To distinguish between the the regions, let us denote
Sk with respect to region Di as Sk

i and let us denote Sk with
respect to region Dj as Sk

j . Sk
i and Sk

j can be understood as
level sets within each region Di and Dj .

Theorem 1. The value function resulting from two disjoint
regions Di and Dj separated by at least δ(si, sj) > 1, ∀si ∈
Di, ∀sj ∈ Dj is:

V ∗(s) = min
s∈S

Vp(s), ∀p ∈ {i, j}, (11)

where Vp(s) indicates the value function resulting from only
region Dp being present in the MDP.

Proof. Recall the k-distance metric from Definition 1, Ki(s)
which for a state si ∈ Di with si ∈ Sk

i for some k, returns
the minimum number of steps k which are required to reach
SZ from si.

As each region is separated by SZ level sets Sk are
established for k = {0, 1, · · · ,K} for each region Di and Dj .
As the regions are separated by SZ , for a given state si ∈ Di,
the distance to SZ is unaffected by the presence of region
Dj . That is, ∀si ∈ Di,Ki(si|Di) = Ki(si|Di,Dj) where the
notation Ki(si|Di) indicates an MDP where only Di is present
and Ki(si|Di,Dj) indicates an MDP where both Di and Dj

are present. Likewise, ∀sj ∈ Dj ,Kj(sj |Dj) = Kj(sj |Dj ,Di).
Therefore, the distances Ki(si) and Kj(sj) are independent of

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 6

each other, and are equivalent to the case where each region Di

and Dj are present in the MDP in isolation. It then follows
that Sk

i and Sk
j are also independent from each other and

are equivalent to the case where each region Di and Dj are
present in the MDP in isolation. That is, Sk

i = Sk
i,j where

Sk
i,j = {s ∈ Sk

i |Di,Dj} indicates the Sk
i when region Dj is

also present in the MDP.
With independence of the regions established, using Corol-

lary 1 and Corollary 2 the value function of Di is V ∗
i (s) =

GKi(s) =
∑k

t=0 γ
t · ri, where ri is the constant negative

reward associated with region Di, and the value function
of Dj is V ∗

j (s) = GKj(s) =
∑k

t=0 γ
t · rj , where rj

is the constant negative reward associated with region Dj .
We note that V ∗

i (s) ≤ 0 and V ∗
j (s) ≤ 0 and given the

independence of Di and Dj , the resulting value function is
therefore V ∗(s) = mins∈S Vp(s), ∀p ∈ {i, j}.

Theorem 1 can be readily extended to N disjoint regions
{D1,D2, · · · ,DN} where all pairs of regions {Di,Dj}, i, j ∈
{1, · · · , N}, i ̸= j are separated by at least δ(si, sj) >
1, ∀si ∈ Di, ∀sj ∈ Dj .

For our problem, each of these disjoint regions Di is a
convex polygon. Well known algorithms exist to determine
distance from a convex polygon which are reasonably efficient
(linear in the number of polygon vertices), which in essence
computes distance to the closest line segment. However, given
the large number of polygons in our problem, a GPU based
implementation was used which performs minimum distance
checks to all polygon edges in parallel with a convention
adopted that points within the polygon have negative distance
and points on the exterior of the polygon have positive distance
(i.e, a signed distance function.) This signed distance function
is used as the distance metric δ(s, si) and the k-distance
function Ki(s), and our value function for each polygon is
computed per Corollary 2. To provide some additional safety
margin around buildings, we inflate the building polygon by
5 meters by subtracting this value from the signed distance
function. We refer to the GPU function which computes
the minimum signed-distance over all polygons as SDF (si),
where si ∈ S. We omit the implementation description due
to space considerations and the well-known nature of the
computation.

In addition to the polygon based negative rewards, intruder
aircraft receive negative rewards around their future expected
position derived from the current position and velocity. We
additionally apply negative rewards if the agent exceeds a
minimum or maximum altitude. Algorithm 2 summarizes the
FastMDP algorithm used for this paper. On line 2 we initialize
inputs into the algorithm including possible actions the aircraft
can take and any constraints on the aircraft motion. On
line 9 we begin building “peaks”, which compute the value
function contribution from each reward. We project forward
dynamics of the aircraft on line 13 to establish the future state
of the aircraft for each possible action. The value function
contribution for reaching the goal is computed on lines 18-23,
where we determine our distance dp to the goal and compute
the discounted future reward on line 21 using the reward
magnitude rp and the MDP discount factor γ. On lines 25-30,

we compute the negative reward value function contribution
for each intruder aircraft using the distance dn, the reward rn
and the discount factor γ. Note that we also defined a boolean
value ρn which is used to only update the value function if the
distance dn to the negative reward is within the predefined risk
well radius. Thus if we are outside the radius, then the resulting
value contribution is zero. On lines 32-37 we compute the
value function contribution for buildings with distance db
computed from the minimum signed distance over all building
polygons, the penalty rb for colliding with a building, the
discount factor γ, and a boolean value ρb which tests whether
the state is inside the building polygon. Thus if a state is
inside the building polygon, a penalty is applied, otherwise no
penalty is applied. On line 38 we compute the intermediate
negative value contribution from all buildings and intruder
aircraft, and on lines 40-42 we compute altitude penalties
if our current altitude is above or below a specified altitude
threshold. On line 43 we compute the value function from all
sources. On line 51 we identify the most valuable action and
on 47 each action is taken simultaneously in simulation. Note
that all aircraft make their action selections independent of
all intruders and without knowledge of any other intruders’
actions, making this is a decentralized implementation.

IV. SIMULATION

To create a challenging test bed, a 3D model of a section of
New York City was downloaded from [35]. Detailed floor plan
outlines were extracted from the models and convex hulls were
created from the floor plans. As the models were very detailed,
some buildings floorplans overlapped (balconies, overhangs,
skywalks, etc), some buildings were highly clustered (e.g.,
small buildings with adjoining walls) such that the resulting
convex polygons numbered in the thousands. To reduce the
polygon count, adjacent and overlapping buildings were clus-
tered and merged into larger convex polygons which subsumed
the smaller buildings resulting in a final polygon count of
330 buildings. Furthermore, in places where curves were very
detailed, the number of vertices was reduced by expanding
the polygon subtly in these areas to create a nearly equivalent
convex polygon with fewer vertices than the original. The
maximum vertex count of any polygon was reduced from
approximately 130 vertices down to a maximum vertex count
of 11. Start and goal locations were chosen randomly in free
space and the “global” algorithm was used to identify the first
waypoint. The “local” algorithm is called at each time step to
control the motion of the UAS. As the UAS fly towards their
waypoints, waypoints are sequenced per Algorithm 1. Through
the simulation, the closest point of approach between UAVs
is tracked along with the closest approach to any building.

RRT, RRT*, and FastMDP are implemented in 2D and 3D,
with serious consideration given only to the 3D cases. RRT,
RRT*, and FastMDP are all limited in their turn rate and
pitch rate. All four algorithms are constrained to a maximum
airspeed of 20 m/s in this simulation, which given the narrow
corridors between buildings is a reasonable limit (perhaps
bordering on aggressive.)

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7

Algorithm 2 FastMDP algorithm.
1: procedure FASTMDP
2: S← initial aircraft states
3: A← aircraft actions (a priori)
4: L← aircraft limits (a priori)
5: while aircraft remain do
6: for each aircraft do
7: st ← S[aircraft]

8: // Build peaks
9: P+ ←pos reward for intermediate goal

10: PB ←neg rewards from buildings
11: PA ←neg rewards from other aircraft
12: // Perform forward projection of aircraft dynamics
13: ∆← fwdProject(st,A,L)

14: // Compute the value at each reachable state
15: V∗ ← allocate space for each reachable state
16: for sj ∈∆ do
17: // First for positive peaks
18: for pi ∈ P+ do
19: dp ← ∥sj − location(pi)∥2 ▷ distance
20: rp ← reward(pi)
21: V+(pi)← |rp| · γdp

22: end for
23: V +

max ← max
pi

V+

24: // Next for negative peaks for intruders
25: for nk ∈ PA do
26: dn ← ∥sj − location(nk)∥2 ▷ distance
27: ρn ← dn < radius(nk) ▷ within radius
28: rn ← reward(nk)
29: V−(nk)← ρn · |rn| · γdn

30: end for
31: // Next for negative peaks for buildings
32: for nb ∈ PB do
33: db ← SDF (nb) ▷ distance
34: ρb ← db < 0
35: rb ← reward(db)
36: V−(nb)← ρb · |rb| · γdb

37: end for
38: V −

max ← max
nk,nb

V−

39: // Altitude penalties
40: alt← altitude(st)
41: Valt ← apply altitude penalty(alt)
42: V −

max ← max(V −
max, Valt)

43: V∗[sj]← V +
max − V −

max

44: end for
45: // Identify the most valuable action
46: amax ← argmax

a
(V∗)

47: // Record each aircraft’s action
48: A∗

t+1[aircraft]← amax

49: end for
50: // Now that all aircraft have selected an action, apply it
51: S = SimulationUpdate(A∗

t+1)
52: end while
53: end procedure

Sensors are ignored within the scope of this paper and
perfect knowledge is assumed. In reality, sensor uncertainty,
communications delays, multi-path effects, and available local-
ization and navigation fix methods would all be challenging
for this problem. Existing sensors such as GPS and ADS-B
would not be able to provide sufficient location resolution or
update rates, and employing the proposed approach in an urban
environment may, for example, require special infrastructure
for localization (e.g., markers or beacons at intersections
or along buildings) and communication (e.g., special radio
links used to broadcast position updates throughout the city.)

LIDARs and other sensors may be able to provide local
area estimates, but reflection and multipath returns may cause
additional uncertainties. While these effects are outside the
scope of this paper, we have previously empirically studied
the performance of FastMDP under uncertainty in [34] and
other papers and have found that it seems to perform well in
the presence of uncertainty in action (or control input) and
uncertainty in intruder position and intruder intent, though
more work is required on the theory.

RRT, RRT*, and FastMDP all require knowledge of whether
a point is within an obstacle. Efficient in-polygon checks are
available in libraries, but given the large number of polygons
in this environment, this takes too long to perform. We opted
to provide a GPU implementation to all three algorithms. In-
polygon checks of convex polygons can be implemented very
efficiently on GPUs, and our long term intended target is an
embedded GPU board such as an NVIDIA Jetson NX, which
is a low Size Weight and Power (SWAP) computer intended
for robotics, automotive, and unmanned aerial vehicles. While
FastMDP has been implemented fully in the GPU in [33],
in order to provide an apples-to-apples comparison, we have
only implemented a small portion of FastMDP in the GPU
for this paper – namely the portion that computes distance
from the polygon obstacles, which is very similar to the GPU-
based in-polygon check. With the exception of this distance
computation, we have the rest of the FastMDP algorithm on
the CPU so that FastMDP does not have an unfair boost
in performance due only to the GPU. We felt this was a
reasonable compromise that allows the GPU to overcome
the large number of polygons which drags down all of the
algorithms’ performance while still providing a level playing
field to usefully compare the algorithms. We also note that
from [15], ORCA should be able to support convex obstacles;
however, we were unable to replicate this functionality using
the RVO-2 version of the algorithm published by the authors.

For the tests, the same set of randomly generated start
and goal locations for 100 UAS was provided, with each
UAS starting in the simulation at its randomly generated start
location one second after the previous UAS. This results in
a gradual ramp-up of the number of UAS over time with a
sustained density of UAS during the middle of the simulation
which tapers off as UAS reach their destinations. As each
algorithm is tested with the same start and goal locations
(and start times), this allows for a fair comparison between
algorithms.

In [27], it was noted that using hard “buffers” around
obstacles (e.g., by inflating the boundary of an obstacle by
a safety margin), useful corridors for navigation are lost that
otherwise could have been navigated. We note here that for
each algorithm, we tuned the safety margin to minimize this
effect. In the case of RRT and RRT*, the safety margins
are a hard constraint that cannot be violated per the normal
RRT formulation and manifests as RRT and RRT* refusing
to form a new edge in the tree that would enter the obstacle
region (which includes the buffer.) In the case of FastMDP
(like all standard MDPs), the obstacles are soft constraints
which are balanced against possible rewards. The magnitude
of the rewards and the penalties are chosen such that the

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 8

0 10 20 30 40 50 60 70
Miss distance (m)

0

5

10

15

20
Nu

m
be

r o
f o

cc
ur
re
nc
es

Air-to-air miss distances
ORCA
RRT
RRT*
FastMDP

Fig. 3. Air-to-Air Miss Distances

penalty of a collision outweighs any possible reward, thus
collision avoidance is achieved. Due to the way negative
reward propagates in an MDP, the safety margin is selected
such that it provides an advance warning to the MDP agent of
an impending collision and the magnitude of the penalty is a
gradient decreasing with increased distance from the obstacle.
The safety margin must also be large enough to account for the
dynamics of the aircraft (e.g., bank angle, turn rate, g-forces,
climb/descent rate limits, etc.) FastMDP will then balance
the desire for obtaining the reward (e.g. reaching the next
waypoint) with any penalties (e.g., collision with building
or collision with another aircraft.) In practice, this allows
FastMDP when traversing a corridor to hug the wall closer to a
building (a moderate penalty) to avoid collision with another
aircraft (a more severe penalty) while still making progress
towards the waypoint (the reward.)

V. RESULTS AND DISCUSSION

Figures 3 and 4 compare collision avoidance performance of
each of the algorithms. In the plots, the miss distance in meters
is plotted along the x-axis, and the y-axis shows the number
of occurrences. The plots shown are histograms showing the
miss distances that occurred over the aircraft flights, where
miss distances were binned into histogram bin values indicated
by the points on the plots and the line segments of the plots
are meant to help identify and compare the histograms. The x-
axis was truncated above a certain value for each plot (approx
70 - 80 meters). Any value on the x-axis ≤ 0 indicates that
a collision occurred. The plots also reveal distributions of the
miss distances; the location and relative magnitude of peaks in
this distribution provide insight into how well the algorithms
perform collision avoidance. Note that in the plots, RRT and
RRT* performed very similarly, and their plots are largely
overlaid atop one another. This is indicated in the plot with
RRT* having a solid green line and RRT having a thicker plot
with larger points, though this may be difficult to discern so
we highlight this for the reader.

Figure 3 shows air-to-air miss distances between UAS.
The plots indicate that RRT and RRT* both had numerous
collisions (miss distance of 0 meters) while ORCA had miss
distances of approximately 1-2 meters. FastMDP in these tests
maintained a minimum miss distance of 13 meters. If we
consider the area under each of the plots, we see that there
are numerous instances of near-collisions with other aircraft

0 20 40 60 80
Miss distance (m)

0

10

20

30

40

Nu
m
be
r o

f o
cc
ur
re
nc
es

Building miss distances
ORCA
RRT
RRT*
FastMDP

Fig. 4. Building Miss Distances

routinely through the flights for ORCA, RRT, and RRT*. As
ORCA is limited to 2D evasion in these experiments, we
could expect more conflicts for ORCA, but considering the
area under the curves, it appears ORCA has done moderately
better than RRT and RRT*, which both can evade in 3D
and which should naturally lead to better evasion. Examining
the paths generated by RRT and RRT*, we find that due
to the tree expansion performed by RRT and RRT*, both
algorithms seem sensitive to poor selection of early nodes (or
“trunks”) in the tree. During tree expansion, RRT and RRT*
both rapidly subdivide the space. During subsequent expansion
steps, the closest node to the newly generated random sample
is found and expansion is performed at the selected node. This
leads to situations where early branches are less-than-optimal
choices, but it is difficult for RRT and RRT* to overcome
these early suboptimal branches, meaning that if an early
suboptimal branch leads to a higher probability of collision,
RRT and RRT* have a limited ability to recover. Though RRT*
has the rewiring mechanism and did qualitatively generate
better trees in our inspections, we did not find an appreciable
improvement in collision avoidance behavior. When examining
other conflicts, we also note that RRT and RRT* can exhibit
a failure mode where no tree expansion is possible because
due to motion constraints, nearly all nodes that are created
are infeasible because they lie within the hard constraints of
collision avoidance. We view this as the unintended conse-
quence of a hard constraint approach. It is easy to view a hard
constraint which cannot be violated as always desirable over a
soft constraint approach and in some situations where adequate
control is possible, this is valid position to take. Decentralized
collision avoidance however is not a fully controllable system
as the other agents may take actions which lead to further
conflict (both agents may for example choose to avoid in
the same direction leading to a head-on collision.) In these
cases a soft constraint may be a better approach than a hard
constraint for cases where hard constraints lead to an infeasible
optimization problem.

In Figure 3, we see that FastMDP has a large spike around
20 meters. In the FastMDP formulation, the agent experiences
a gradually increasing penalty starting at 20 meters, so it
makes sense to see the spike start at 20 meters and rapidly
fall off. We see a couple of instances around 12-13 meters
where FastMDP did not maintain a 20 meter separation. This
occurs because FastMDP (like any MDP) treats penalties as

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

TABLE I
ALGORITHM PERFORMANCE COMPARISONS

Algorithm Physics Flight Building Aircraft Time per
Constraints Aware Aware Frame

ORCA 2D No No Yes 1.3 ms
RRT-2D 2D No Yes No 20 - 30 ms
RRT-2D-A 2D No Yes Yes 70 - 200 ms
RRT-3D-A 3D Yes Yes Yes 170 - 2000 ms
RRT*-2D 2D No Yes No 30 - 80 ms
RRT*-2D-A 2D No Yes Yes 120 - 385 ms
RRT*-3D-A 3D Yes Yes Yes 900 - 7000 ms
FastMDP 3D Yes Yes Yes 32 - 35 ms

soft constraints and FastMDP begins responding to penalties
once they begin to incur. Thus when tuning FastMDP, we
chose a value for collision avoidance (20 meters) that was
larger than the value we were concerned about (0 meters) so
that the agent would have time to respond.

Moving to Figure 4 we now examine building miss dis-
tances. Here we see that ORCA had collisions with buildings
(miss distances ≤ 0.) This should not suprise us at all, as
ORCA is only aware of UASs in this experiment and is not
aware of buildings. Most likely, while performing collision
avoidance with other UAS, ORCA unwittingly crossed into the
boundary with a building. Above 2 meters, we see that ORCA,
RRT, and RRT* all had approximately equivalent building
avoidance behavior, which confirms that the medial axis graph
provides a baseline level of building collision avoidance by
providing conflict free paths for the local planning problem.
We see again that FastMDP has a spike in the plot, this time
around 10 meters which is the value we begin applying penalty
for buildings. We see that FastMDP responds by avoiding
buildings and maintains a better collision avoidance profile
under 10 meters than ORCA, RRT, and RRT* suggesting that
FastMDP’s ability to respond to building collisions is due to
a factor beyond the baseline collision avoidance provided by
the medial axis graph.

Taken together, in these tests we see that FastMDP is doing
a better job of balancing both collisions with other aircraft and
collisions with buildings leading to overall superior collision
avoidance behavior. Figure 5 shows a sample run with multiple
aircraft simultaneously navigating the city environment, with
the “ownship” indicated with a blue “X”, the intermediate goal
indicated with a green dashed line, intruder aircraft indicated
with a red “X”, and the MAG in dashed blue lines.

Table I compares the computational performance of the
algorithms. Originally, ORCA and only simple versions of
RRT and RRT* were compared to FastMDP to establish a
baseline. The rows RRT-2D and RRT*-2D capture these early
baselines which were 2D implementations of RRT without
knowledge of flight constraints and without awareness of
aircraft. We see that in this case, the computational perfor-
mance of these variants to FastMDP were comparable, though
FastMDP implemented 3D collision avoidance and was aware
of the other aircraft. To ensure fair comparisons between the
algorithms, the complexity of RRT was gradually increased.
The RRT-2D-A and RRT*-2D-A variants added awareness of

other aircraft, which were modelled as disc-shaped obstacles
that RRT needed to route around. These variants started to
see an increase in computation time, which started to make
the RRT variants look less favorable compared to FastMDP.
When switching to 3D with flight constraints, this dramatically
increase the computation needed for RRT and RRT* (shown
in the RRT-3D-A and RRT*-3D-A rows in the table) as the
restricted turn radius resulted in having to build trees with a
larger number of nodes and the third dimension (altitude) also
required more nodes to explore. Additionally, the RRT-3D-
A and RRT*-3D-A rows also experienced many cases where
a solution could not be found. In these cases, rather than a
path to the goal, we instead settled for a path to the node of
the tree which was nearest to the intermediate goal. We see
also that the RRT*-3D-A row also sees a marked increase in
computation time which is due to the need to perform more
building polygon hit testing due to RRT*’s rewiring operation,
which attempts to find better connections between existing
nodes in the tree and serves to rebalance the tree in a limited
way. For this problem due to the large number of polygons,
this hit testing is an expensive operation, even when performed
with GPU acceleration as was done for all of these results.
Thus we see that RRT and RRT* start to become untenable as
the problem becomes more realistic and complex. Recall that
ORCA is excellent at avoiding collisions with other aircraft,
but has no knowledge of buildings or ability to avoid them in
this simulation. Note that the collision avoidance behaviors
shown in Figures 3 and 4 used the best-possible collision
avoidance variants of RRT-3D-A and RRT*-3D-A and did not
show performance for the RRT-2D, RRT-2D-A, RRT*-2D, or
RRT*-2D-A variants. The RRT-3D-A and RRT*-3D-A are the
fairest comparison with FastMDP as none of the algorithms
should have any unfair advantages over the others in terms of
physical space they can occupy to avoid collision with other
aircraft.

For future work, the authors would like to extend these algo-
rithms to a full 3D representation where we also consider flight
over buildings. Early exploration showed there are significant
computation barriers that will need to be overcome, likely
requiring a full GPU-based implementations of all algorithms
for fair comparisons to be made which is out of scope of this
paper. Additionally, an alternative to the MAG may be required
to represent the airspace structure, perhaps in the form of a
multi-altitude MAG where multiple 2D MAGs are stacked on

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 10

top of each other. Another important extension for future work
would be to incrementally update the MAG allowing edges
of the graph to become blocked and allowing an efficient
rerouting to be computed from the pre-computed all-pairs-
shortest-distance lookup table to allow for better dynamic
rerouting.

VI. CONCLUSION

This paper identified an efficient method for UAS to
navigate an urban environment and compared the collision
avoidance and computational performance of four algorithms,
ORCA, RRT, RRT*, and FastMDP where ORCA was treated
as the baseline for the other algorithms. The results show that
in a simple enough environment RRT and RRT* have a reason-
able computational performance comparable to FastMDP, but
as the problem becomes more realistic RRT and RRT* struggle
to remain efficient primarily due to having to create more
nodes in a 3D environment with constrained motion. FastMDP
was shown to perform much better than RRT and RRT* for
the 3D environment with constrained motion and knowledge of
other UAS. In terms of collision avoidance behavior, FastMDP
was shown to perform better than ORCA, RRT, and RRT* for
both buildings and aircraft in these simulations.

VII. ACKNOWLEDGEMENT

The authors wish to thank the reviewers for their thoughtful
comments during the review process. Their constructive, pro-
fessional comments have helped to improve the overall quality
and clarity of the manuscript.

Fig. 5. Example Navigation of Multiple Agents using FastMDP

REFERENCES

[1] M. Mulvaney and M. Kratsios, “M-18-22: Memorandum for the Heads
of Executive Departments and Agencies - FY 2020 Administration
Research and Development Budget Priorities,” Executive Office of the
President, the White House, Tech. Rep., 2018.

[2] R. Vought and K. Droegemeier, “M-19-25: Memorandum for the Heads
of Executive Departments and Agencies - FY 2021 Administration
Research and Development Budget Priorities,” Executive Office of the
President, the White House, Tech. Rep., 2019.

[3] David P. Thipphavong and Rafael Apaza and Bryan Barmore and
Vernol Battiste and Barbara Burian and Quang Dao and Michael Feary
and Susie Go and Kenneth H. Goodrich and Jeffrey Homola and
Husni R. Idris and Parimal H. Kopardekar and Joel B. Lachter and
Natasha A. Neogi and Hok Kwan Ng and Rosa M. Oseguera-Lohr
and Michael D. Patterson and Savita A. Verma, “Urban air mobility
airspace integration concepts and considerations,” in In Proceedings of
Aviation Technology, Integration, and Operations Conference, Atlanta,
GA, 2018. [Online]. Available: doi:10.2514/6.2018-3676

[4] The Federal Aviation Administration, “Urban Air Mobility (UAM)
Conceopt of Operations v1.0,” Tech. Rep., 2020. [Online].
Available: https://nari.arc.nasa.gov/sites/default/files/attachments/UAM
ConOps v1.0.pdf

[5] National Academies of Sciences, Engineering, and Medicine,
“Advancing Aerial Mobility: A National Blueprint,” The National
Academies Press, Washington, DC, Tech. Rep., 2020. [Online].
Available: https://doi.org/10.17226/25646

[6] National Aeronautics and Space Administration, “Advanced Air
Mobility,” Tech. Rep., 2020. [Online]. Available: https://www.nasa.gov/
aam

[7] R. F. Vitalle, Y. Zhang, B. Normann, and N. Shen, A Model for the
Integration of UAM operations in and near Terminal Areas. [Online].
Available: https://arc.aiaa.org/doi/abs/10.2514/6.2020-2864

[8] B. German, M. Daskilewicz, T. K. Hamilton, and M. M. Warren, Cargo
Delivery in by Passenger eVTOL Aircraft: A Case Study in the San
Francisco Bay Area. [Online]. Available: https://arc.aiaa.org/doi/abs/10.
2514/6.2018-2006

[9] X. Yang and P. Wei, “Scalable multi-agent computational guidance
with separation assurance for autonomous urban air mobility,” Journal
of Guidance, Control, and Dynamics, vol. 43, no. 8, pp. 1473–1486,
2020. [Online]. Available: https://doi.org/10.2514/1.G005000

[10] X. Yang and P. Wei, “Autonomous free flight operations in urban air
mobility with computational guidance and collision avoidance,” IEEE
Transactions on Intelligent Transportation Systems, pp. 1–14, 2021.

[11] C. Bosson and T. A. Lauderdale, Simulation Evaluations of
an Autonomous Urban Air Mobility Network Management and
Separation Service. [Online]. Available: https://arc.aiaa.org/doi/abs/10.
2514/6.2018-3365

[12] S. Verma, J. Keeler, T. E. Edwards, and V. Dulchinos, Exploration of
Near term Potential Routes and Procedures for Urban Air Mobility.
[Online]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.2019-3624

[13] S. Tarafdar, M. Rimjha, N. Hinze, S. Hotle, and A. A. Trani, “Urban air
mobility regional landing site feasibility and fare model analysis in the
greater northern california region,” in 2019 Integrated Communications,
Navigation and Surveillance Conference (ICNS), 2019, pp. 1–11.

[14] W. B. Cotton and D. J. Wing, Airborne Trajectory Management for
Urban Air Mobility. [Online]. Available: https://arc.aiaa.org/doi/abs/10.
2514/6.2018-3674

[15] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body
collision avoidance,” in Robotics Research, C. Pradalier, R. Siegwart,
and G. Hirzinger, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 3–19.

[16] S. M. LaValle, “Rapidly-exploring random trees : A new tool for path
planning,” The annual research report, 1998.

[17] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” The International Journal of Robotics
Research, vol. 30, no. 7, pp. 846–894, 2011. [Online]. Available:
https://doi.org/10.1177/0278364911406761

[18] J. R. Bertram, “Applying fastmdp to complex aerospace-related prob-
lems,” Ph.D. dissertation, Iowa State University, 2022.

[19] J. A. Marshall, W. Sun, and A. L’Afflitto, “A survey of guidance,
navigation, and control systems for autonomous multi-rotor small
unmanned aerial systems,” Annual Reviews in Control, vol. 52, pp.
390–427, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1367578821000882

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 11

[20] S. Koo, S. Kim, and J. Suk, “Model predictive control for uav
automatic landing on moving carrier deck with heave motion,”
IFAC-PapersOnLine, vol. 48, no. 5, pp. 59–64, 2015, 3rd IFAC
Workshop on Multivehicle Systems. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S240589631500703X

[21] I. Prodan, S. Olaru, R. Bencatel, J. Borges de Sousa, C. Stoica,
and S.-I. Niculescu, “Receding horizon flight control for trajectory
tracking of autonomous aerial vehicles,” Control Engineering Practice,
vol. 21, no. 10, pp. 1334–1349, 2013. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0967066113001020

[22] R. E. Bellman, Dynamic Programming. Princeton University Press,
1957.

[23] R. Bellman, “A markovian decision process,” Journal of Mathematics
and Mechanics, vol. 6, no. 5, pp. 679–684, 1957. [Online]. Available:
http://www.jstor.org/stable/24900506

[24] E. Aldao, L. M. González-deSantos, H. Michinel, and H. González-
Jorge, “Uav obstacle avoidance algorithm to navigate in dynamic
building environments,” Drones, vol. 6, no. 1, 2022. [Online]. Available:
https://www.mdpi.com/2504-446X/6/1/16

[25] H. Freimuth and M. König, “Planning and executing construction
inspections with unmanned aerial vehicles,” Automation in Construction,
vol. 96, pp. 540–553, 2018. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S092658051730290X

[26] Y. Dong, E. Camci, and E. Kayacan, “Faster rrt-based nonholonomic
path planning in 2d building environments using skeleton-constrained
path biasing,” Journal of Intelligent & Robotic Systems, vol. 89, no. 3,
pp. 387–401, 2018.

[27] J. A. Marshall, R. B. Anderson, W.-Y. Chien, E. N. Johnson,
and A. L’Afflitto, “A guidance system for tactical autonomous
unmanned aerial vehicles,” Journal of Intelligent & Robotic Systems,
vol. 103, no. 4, p. 71, Nov 2021. [Online]. Available: https:
//doi.org/10.1007/s10846-021-01526-8

[28] J. R. Bertram, “A new solution for markov decision processes and its
aerospace applications,” Graduate Theses and Dissertations. 17832.,
2020. [Online]. Available: https://lib.dr.iastate.edu/etd/17832

[29] J. Bertram, X. Yang, M. W. Brittain, and P. Wei, Online
Flight Planner with Dynamic Obstacles for Urban Air Mobility.
AIAA Aviation 2019 Forum, 2019. [Online]. Available: https:
//arc.aiaa.org/doi/abs/10.2514/6.2019-3625

[30] J. Bertram and P. Wei, Distributed Computational Guidance for High-
Density Urban Air Mobility with Cooperative and Non-Cooperative
Collision Avoidance. AIAA Scitech 2020 Forum, 2020. [Online].
Available: https://arc.aiaa.org/doi/abs/10.2514/6.2020-1371

[31] ——, An Efficient Algorithm for Self-Organized Terminal Arrival in
Urban Air Mobility. AIAA Scitech 2020 Forum, 2020. [Online].
Available: https://arc.aiaa.org/doi/abs/10.2514/6.2020-0660

[32] ——, An Efficient Algorithm for Multiple-Pursuer-Multiple-Evader
Pursuit/Evasion Game. AIAA Scitech 2021 Forum, 2021. [Online].
Available: https://arc.aiaa.org/doi/abs/10.2514/6.2021-1862

[33] J. Bertram, P. Wei, and J. Zambreno, Scalable FastMDP for Pre-
departure Airspace Reservation and Strategic De-conflict. AIAA
Scitech 2021 Forum, 2021. [Online]. Available: https://arc.aiaa.org/doi/
abs/10.2514/6.2021-0779

[34] ——, “A fast markov decision process-based algorithm for collision
avoidance in urban air mobility,” IEEE Transactions on Intelligent
Transportation Systems, pp. 1–14, 2022.

[35] City of New York. (2021) NYC 3D Model By Community District,
MN CD 01 district. [Online]. Available: https://www1.nyc.gov/site/
planning/data-maps/open-data/dwn-nyc-3d-model-download.page

[36] O. Aichholzer and F. Aurenhammer, “Straight skeletons for general
polygonal figures in the plane,” in International computing and com-
binatorics conference. Springer, 1996, pp. 117–126.

[37] M. Rezanejad, B. Samari, I. Rekleitis, K. Siddiqi, and G. Dudek,
“Robust environment mapping using flux skeletons,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2015, pp. 5700–5705.

[38] P. J. Vermeer, “Medial axis transform to boundary representation con-
version,” Ph.D. dissertation, Purdue University, 1994.

[39] M. Wan, F. Dachille, and A. Kaufman, “Distance-field based skeletons
for virtual navigation,” in Proceedings Visualization, 2001. VIS’01.
IEEE, 2001, pp. 239–560.

[40] N. D. Cornea, D. Silver, and P. Min, “Curve-skeleton properties,
applications, and algorithms,” IEEE Transactions on visualization and
computer graphics, vol. 13, no. 3, p. 530, 2007.

[41] The CGAL Project, CGAL User and Reference Manual, 5.4 ed.
CGAL Editorial Board, 2022. [Online]. Available: https://doc.cgal.org/
5.4/Manual/packages.html

Josh Bertram Josh Bertram is a PhD candidate
at Iowa State University and a Machine Learning
/ Artificial Intelligence researcher at the Johns Hop-
kins University Applied Physics Lab. Previously,
he completed his Masters at Iowa State Univer-
sity and focused on Markov Decision Processes
and their applications to aerospace problems. Josh
worked at Collins Aerospace for 16 years in real-
time embedded systems and as a Machine Learning
/ Artificial Intelligence engineer. Josh’s interests are
in the intersection of embedded computing, avionics,

and artificial intelligence where size, weight, and power constraints restrict
the types of algorithms that can be employed.

Joseph Zambreno Joseph A. Zambreno has been
with the Department of Electrical and Computer
Engineering at Iowa State University since 2006,
where he is currently a Professor, Associate Chair,
and director of the Reconfigurable Computing Lab
(RCL). Prior to joining ISU he was at Northwestern
University in Evanston, IL, where he graduated with
his Ph.D. degree in Electrical and Computer Engi-
neering in 2006, his M.S. degree in Electrical and
Computer Engineering in 2002, and his B.S. degree
summa cum laude in Computer Engineering in 2001.

While at Northwestern University, Dr. Zambreno was a recipient of a National
Science Foundation (NSF) Graduate Research Fellowship, a Northwestern
University Graduate School Fellowship, a Walter P. Murphy Fellowship, and
the EECS department Best Dissertation Award for his Ph.D. dissertation titled
“Compiler and Architectural Approaches to Software Protection and Security.”
He is a recent recipient of the NSF CAREER award (2012), as well as
the ISU award for Early Achievement in Teaching (2012), the College of
Engineering Outstanding Achievement in Teaching Award (2019), and the
ECpE department’s Warren B. Boast undergraduate teaching award (2009,
2011, 2016).

Peng Wei Peng Wei is an assistant professor in
the Department of Mechanical and Aerospace Engi-
neering at the George Washington University, with
courtesy appointments at Electrical and Computer
Engineering Department and Computer Science De-
partment. By contributing to the intersection of con-
trol, optimization, machine learning, and artificial
intelligence, he develops autonomy and decision
support tools for aeronautics, aviation and aerial
robotics. His current focus is on safety, efficiency,
and scalability of decision making systems in com-

plex, uncertain and dynamic environments. Recent applications include:
Air Traffic Control/Management (ATC/M), Airline Operations, UAS Traffic
Management (UTM), eVTOL Urban Air Mobility (UAM) and Autonomous
Drone Racing (ADR). He is leading the Intelligent Aerospace Systems Lab
(IASL). He is an associate editor for AIAA Journal of Aerospace Information
Systems. He received his Ph.D. degree in Aerospace Engineering from Purdue
University in 2013.

