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Abstract—Ensuring safe separation of aircraft has become a
major challenge given the growing demand for air transportation.
Recently, deep reinforcement learning (DRL) has been success-
fully applied to develop aircraft separation assurance systems.
Though showing promising performance, the DRL systems are
trained as black boxes with no safety guarantees. Given the
catastrophic impact of potential failures, validations of these
systems become critical. However, existing validation approaches
focus on system failures caused by single factors and only
work on the cases with one validated system, which greatly
limits their use in real-world high-density air traffic where
numerous validated systems exist and multiple factors cause
the failures together. In this paper, we introduce a multi-agent
adaptive stress testing formulation for the system validation
task and propose a Multi-Agent Hybrid Adaptive Stress Testing
(MAHAST) framework to comprehensively validate DRL-based
aircraft separation assurance systems given high-density air
traffic by detecting system failures caused by unsafe system
dynamics and improper environment properties. Moreover, we
introduce a novel hybrid adaptive stress testing approach with a
hierarchical policy, detecting the failures caused by combinations
of multiple factors. We conduct extensive numerical experiments
in a real-time air traffic environment. Results empirically show
that MAHAST can effectively detect diverse failures in DRL-
based aircraft separation assurance systems with high-density
air traffic.

I. INTRODUCTION

With the rapid growth of global air traffic, ensuring the
safe separation among aircraft becomes a key challenge. Deep
Reinforcement Learning (DRL) has been recently applied to
the aircraft separation assurance systems, ensuring aircraft
safety in complex and dense traffic [1]–[4]. Despite showing
promising performance, these DRL models are trained with no
safety guarantee. Since the failures of the separation assurance
system lead to catastrophic accidents, the validation of the
DRL-based separation assurance systems is of great impor-
tance. However, these DRL models have complex structures
and interact with external systems in a complicated manner,
which makes the safety validation challenging; severely re-
stricting their use in real-world scenarios.

Various approaches on safety validation have been proposed
and can be categorized into two types: formal methods and

simulation methods. Formal methods prove the safety proper-
ties of a system via reachability analysis [5]–[7]. However,
these methods rely on a precise mathematical formulation,
which is difficult for a complex system like the DRL model.
Simulation methods evaluate the system performance by sam-
pling a series of scenarios with a simulation model [8], [9].
Though simulation methods have fewer constraints on the
validated system than formal methods, the sampling process
makes the validation inefficient given the large sample space
and rarity of failure events in the validated system [10].

To address the sampling inefficiency in validation, Adaptive
Stress Testing (AST) [11] is proposed to first formulate the
validation as a sequential decision-making problem and then
develop a stress testing policy, aiming to find scenarios that
lead to failures of the validated system. The key point of AST
is the sample selection based on the stress testing policy. Dif-
ferent methods can be applied to solve the problem. Reinforce-
ment Learning (RL) methods [11], [12] design specific reward
functions to encourage the detection of failures. Optimization
approaches [10], [13] guide the selection with a constructed
objective function based on the failure information.

For AST of DRL-based aircraft separation assurance sys-
tem, each aircraft in the testing environment observes the in-
formation about the surrounding aircraft and the environment.
The separation assurance system represents the System Under
Test (SUT) of aircraft and the AST solver can be implemented
on the surrounding aircraft. The failure is a collision between
aircraft, representing that the assurance system fails to main-
tain sufficient separation. Figure 1 shows an example with 4
aircraft in a test environment. Two of them are equipped with
SUTs and the others are equipped with AST solvers. SUT aims
to maintain the safe separation of aircraft. On the other hand,
AST solver tries to guide the aircraft to move in an unsafe
way which leads to a collision.

Though achieving remarkable success in the system val-
idation, prior AST methods focus on cases with only one
autonomous system equipped with SUT [11], [14], [15], which
fails in the tasks where multiple systems controlled by SUT
are present. Moreover, these approaches can only find failures



Fig. 1: An illustrative example of Adaptive Stress Testing
(AST) on DRL-based aircraft separation assurance system.
Four aircraft fly along the routes in a test environment. The
separation assurance systems are implemented on two aircraft
to maintain safe separation. The AST solvers are installed
on the remaining two aircraft and control them to move in
an unsafe way, aiming to have conflicts with the aircraft
controlled by the assurance systems.

caused by one factor, either the dangerous agent movements
[11] or the improper environment settings [10], but cannot
detect their combined effects, which can lead to serious and
complex failures. All these problems restrict the AST to
provide a comprehensive system validation.

To tackle the above challenges, we propose a Multi-Agent
Hybrid Adaptive Stress Testing (MAHAST) framework for
the safety validation problem of DRL-based aircraft separation
assurance system. In contrast to the previous works, our
proposed framework can detect the failures caused by differ-
ent factors and their combinations, given numerous aircraft
controlled by SUT and AST solver in the test environment.
Specifically, we first introduce a novel multi-agent adaptive
stress testing formulation to describe the validation task based
on a Multi-Agent Reinforcement Learning (MARL) setting,
treating each aircraft in the test as an agent. Then, a dynamic
solver is proposed to detect the failures caused by unsafe
actions from multiple aircraft. For the dynamic solver, a
Proximal Policy Optimization (PPO) network is implemented
to guide its sample selection. Moreover, we introduce a static
solver to detect failures due to improper configurations or
changes in the environment with high traffic density based
on Bayesian Optimization (BO). Afterwards, to address the
combined effects of multiple factors in the environment, we
develop a hybrid solver using a novel bi-level hierarchical
policy, detecting the failures caused by the combination of
unsafe aircraft actions and improper environment configura-
tions. Extensive experiments in the BlueSky environment [16]
demonstrate the effectiveness of our proposed framework.

The main contributions of our work are summarized as
follows:

• We frame the safety validation of the aircraft separation
assurance system as a multi-agent AST problem based
on the MARL setting.

• We propose a framework for the safety validation of
DRL-based aircraft separation assurance systems includ-
ing three AST solvers, which can detect system failures

due to diverse reasons in high-density air traffic.
• We conduct extensive experiments to validate a state-of-

the-art DRL-based aircraft separation assurance model.
The results empirically show that the developed frame-
work can effectively validate its safety by detecting
failures due to various reasons.

The rest of this paper is organized as follows. Section II
provides a literature review on the related work. Section III
presents our formulation of the validation problem. Section IV
introduces the proposed framework in detail. Section V shows
the experiment results and our findings. Finally, Section VI
summarizes our conclusions.

II. RELATED WORKS

A. Deep Reinforcement Learning for Aircraft Separation As-
surance

The application of DRL algorithms has been widely inves-
tigated in aircraft separation assurance. Variants of Deep Q-
networks [17], [18] are adapted to resolve potential airspace
conflicts [19]–[23]. Because PPO [24] can output a stochastic
policy that performs better in multi-agent environments, PPO
is another popular model for separation assurance in a discrete
action space setting [2], [25]. For continuous action space
settings, the Deep Deterministic Policy Gradient (DDPG)
[26] algorithm has been applied to address conflicts between
aircraft [27]–[30]. However, these DRL models have complex
internal structures and are trained as black boxes, making them
difficult to be validated and further limiting their use in real-
world safety-critical systems.

B. Validation of Autonomous System

Many approaches have been applied to validate the safety of
autonomous systems. They can be divided into two categories:
formal methods and simulation methods. Formal methods
construct well-designed mathematical models to determine
whether certain properties hold [5], [6], [31]. Probabilistic
Model Checking (PMC) formally verifies specific character-
istics over a stochastic model with discrete states [7], [32],
[33]. Other formal methods like Automated Theorem Proving
(ATP) methods take the advantage of computer algorithms to
automatically generate mathematical proofs based on formal
logic models [34]. However, the complex mathematical models
strictly limit the scale of the validated models, which cannot
work with DRL models. On the other hand, simulation meth-
ods assess the system properties with a simulation model based
on the results from a fixed number of samples. The simulation
model can be manually designed by experts with domain
knowledge [8]. Stochastic models can also be implemented
to approximate the system environment for simulation [9],
[35], but the sampling process in simulation methods makes
it inefficient given the large sample space and rarity of failure
events.

C. Adaptive Stress Testing for Validation

AST has been proposed to successfully tackle the sample in-
efficiency of simulation-based validation methods, which aims



Fig. 2: The architecture of the MAHAST framework, which includes three AST solvers: dynamic solver, static solver, and
hybrid solver. These solvers control different components of the environment and learn stress testing policies based on the
failure information. The learned policies guide the solvers to efficiently find more failures.

to find the system failures with a stress testing policy. AST was
first implemented to find failures of the autonomous vehicle
in [11]. [36] integrated AST and neural network verification
methods together to validate the image-based controllers.
AST was further extended to a partially observable Markov
decision process through integration with a modified Monte
Carlo tree search method [12]. [10] proposed an optimization-
based AST framework for unmanned aircraft systems and
improved system safety by revising the environment settings
leading to most failures. Go-explore method [10] and reward
augmentation [15] are also implemented to build more efficient
reward functions. Though the above articles showed promising
performance on the failures caused by unsafe actions of
autonomous systems and improper environment properties,
their simple structures fail to handle the combined effects of
multiple factors, which can lead to complex and serious fail-
ures. Moreover, these articles concentrate on the environment
where only one AST solver and one SUT exist. However, this
setting can be too ideal because the real-world environment
may always have high-density traffic, which greatly increases
the difficulty of validation. In this work, we aim to compre-
hensively validate the system by considering the failures due
to either single factors or their combinations when multiple
autonomous systems controlled by SUTs and AST solvers are
present in the environment, which is a more complex problem
that has not been previously studied.

III. PROBLEM FORMULATION

In this paper, the safety validation of the DRL-based aircraft
separation assurance system is formulated as an AST problem
with MARL settings, where each aircraft is treated as an agent
in the test environment. Specifically, the aircraft can either
be controlled by the SUT (the DRL-based aircraft separation
assurance system to be validated) or the AST solver, which
are then called SUT agent and AST agent respectively. In this
section, we first introduce the formulation of the AST problem

Fig. 3: Structure of the test environment. The green triangles
are the aircraft flying in the test environment. The dotted lines
and the solid lines represent the routes and environment bound-
aries. Ri and Ij stands for the ith route and jth intersection
in the sector.

where only one SUT agent and one AST agent are in the test.
Afterwards, based on the MARL setting, we expand the AST
problem into a multi-agent case where multiple SUT agents
and multiple AST agents exist, which makes the validation
more difficult.

A. Adaptive Stress Testing of Aircraft Separation Assurance
System

AST formulates the safety validation problem as a sequen-
tial decision-making problem and solves it by searching for
system failures with a stress testing policy. The system to be
validated is called system under test (SUT), which is a DRL-
based aircraft separation assurance system in our problem.
This SUT is installed on the aircraft in the test environment
and aims to maintain safe separation from surrounding aircraft
by providing speed advisories. The SUT can have complex
internal dynamics and is treated as a black box model.

The system failures are defined as a set E , representing the
events where the DRL-based separation assurance system fails
and the aircraft have conflicts with others in our setting. To
detect these failures, an AST solver controls some compo-
nents in the test environment and receives the information on



whether its actions lead to a failure event in E . Based on
this information, the AST solver learns a stress testing policy,
which guides the AST solver to modify the environment
components and find more failures.

The test environment is also treated as a black box. Given
the actions of the AST solver, we can only observe an updated
environment state and the indication if a failure happens.
Specifically, the test environment in our problem is an en
route sector with two routes, one intersection, and high-density
air traffic, providing a representative sector structure. The test
environment is illustrated in Figure 3.

All aircraft in the test environment are set to be the same
type, Airbus A320. The minimum and maximum values of
the calibrated airspeed are set to be 156 knots and 346 knots
respectively. Aircraft update their action every 12 seconds to
represent the worst-case radar surveillance update interval in
en route airspace.

Considering that AST and SUT agents are controlled by dif-
ferent systems, communication between them is implemented.
We assume the states of all aircraft are available to each
other, which allows SUT to obtain all information needed for
decision-making and to better maintain separation. Though
increasing the difficulty of failure detection, this makes our
formulation more applicable to real-world cases where SUT
has access to all information.

B. Formulation of Multi-Agent Adaptive Stress Testing

The real-world test environment may always contain mul-
tiple SUT and AST agents, which are beyond the capacity of
the previous AST setting. Therefore, in this paper we propose
a novel multi-agent AST formulation when multiple SUT and
AST agents are in the test environment based on a MARL
setting. Since interactions with multiple SUT and AST agents
must be taken into account, validation becomes significantly
more challenging in our case.

We assume that there are n AST agents and m SUT agents
in the test environment. The ith AST agent can observe the
state si (i = 1, ..., n) from its state space Si. ai denotes the
action of AST agent from its action space Ai. The transition
function T provides the transition probability from the joint
state (s1, ..., sn) to the joint next state (s′1, ..., s

′
n) given the

joint action (a1, ..., an). Based on the transition information,
a reward function ri is provided to determine the immediate
reward for each AST agent. Each AST agent aims to learn an
optimal policy πi that maximizes the expected value of the
cumulative rewards.

Specifically, the state si of an AST agent includes the
information about itself and 5 closest agents: distance to sector
exit, speed, acceleration, route identifier, distance between
itself and surrounding agents, and distance between itself and
the intersection. The state space follows the definition provided
in [2].

Each AST agent has a discrete action space Ai with three
actions: (1) decelerate, (2) maintain the current speed, and (3)
accelerate.

The termination of each AST agent happens: (1) when it
reaches the failure event by having a conflict with other aircraft
or (2) when it reaches the sector exit safely.

To detect failures of the DRL-based separation assurance
system, a reward function encouraging small distances be-
tween aircraft is provided to each AST agent.

ri =


1 if dco < 3,

α+ δ · dco if 3 ≤ dco < 10,

0 otherwise.
(1)

Parameters α and δ guarantee that the reward stays between
0 and 1. dco is the distance from the AST agent to its closest
aircraft in units of nautical miles.

IV. METHOD

To comprehensively validate the safety of the DRL-based
aircraft separation assurance system considering the diverse
failure causes and multiple aircraft in the test environment, we
present a novel Multi-Agent Hybrid Adaptive Stress Testing
(MAHAST) framework. Specifically, we propose three AST
solvers to detect failures with different reasons, namely, the
dynamic AST solver, the static AST solver, and the hybrid
AST solver.

The dynamic solver consists of a PPO neural network
controlling the actions of the AST agent as a non-cooperative
aircraft to generate conflicts with other aircraft. The static
solver based on BO searches for improper environment con-
figurations or environment changes. The hybrid solver im-
plements a bi-level hierarchical policy that looks for failures
caused by the combination of multiple factors from the test
environment. In this section, we first describe the structures of
these three solvers separately and then discuss their integration
as a comprehensive validation framework.

A. Dynamic AST Solver

A common reason for separation assurance failures is that
some aircraft make unsafe actions, especially when they
are non-cooperative [11]. Such failures may be even more
prevalent if multiple aircraft exist in the test environment [11].
Therefore, we develop a dynamic AST solver to detect failures
caused by dangerous aircraft actions with the existence of
multiple aircraft. Dynamic solvers are implemented in some
aircraft and control their actions during the test.

1) Stress Testing Policy: The core of the dynamic solver is
a stress testing policy controlling the actions of AST agents.
A PPO neural network is implemented to learn the policy
similar to [2] considering complex state space and dense
traffic. The input of the PPO network is the states of the AST
agent itself and the 5 closest aircraft. The output is a policy
guiding the action selection of the AST agent. Because the
reward functions encourage small distances among aircraft, the
learned policy prefers dangerous actions leading to conflicts.
These actions are detected as dangerous actions given the
corresponding state. And the failure events can be treated as
the worst cases due to the existence of non-cooperative agents.



The information can help revise SUT by avoiding similar
behaviors.

2) Centralized Learning Decentralized Execution: To help
the dynamic solver learn policies efficiently and improve the
cooperation among AST agents, we implemented a central-
ized learning decentralized execution scheme for the dynamic
solver. During the training phase, transitions generated by all
AST agents are gathered together and sent to an identical
PPO neural network as a central learner. The updated model
weights from the central PPO network are distributed to
the PPO networks on all AST agents. During the evaluation
phase, given the diverse states of these AST agents, the PPO
networks can provide different decisions accordingly. Since
the central PPO network is trained with information from all
AST agents, the learned policy will tend to improve the overall
expected return among all AST agents, leading to more failures
detected. In addition, the decentralized execution design allows
users to easily add new AST agents into the test by sending
the converged model to the aircraft as a controller, helping
users validate the assurance systems under various densities
of AST agents.

3) Interaction with Environment and SUT: Given the stress
testing policy, three functions are designed for AST solvers to
interact with the test environment and SUT agents:

• Initialize: An AST solver is attached to one aircraft in
the test and the aircraft is initialized as an AST agent.

• Terminate: If the AST agent reaches the termination, its
trajectory finishes, and its AST solver detaches.

• Step: AST Solver selects the action for the AST agent
and updates its state accordingly.

4) Generalization Improvement: Previous articles generally
train AST solvers with fixed roles of agents [11], [14].
For example, given two aircraft in the test environment, the
leading aircraft is always the SUT agent. While simplifying
the problem, this setting deteriorates the model generalization
to the real world where the roles of agents can be diverse.
This is even more harmful in our multi-agent case because
the roles can be more complex.

To address the issue, we introduce a technique called
Agent Role Randomization. Specifically, the dynamic solvers
and SUTs are randomly allocated to aircraft in each test
during training, which randomizes the roles of all AST and
SUT agents. Therefore, AST solvers cannot simply memorize
actions based on a fixed order but need to develop a dynamic
strategy, which helps AST solvers generalize better and be-
come more applicable to real world scenarios.

B. Static AST Solver

Another common reason for failure for aircraft separation
assurance is the improper environment configuration or envi-
ronment changes. Considering the large configuration space,
we propose a static AST solver based on BO to detect
these failures which influence multiple aircraft in the test
environment. Instead of directly guiding the dynamics of some
aircraft as the dynamic solver, the BO-based static solver
modifies the environment configuration before the test and

updates the policy based on the failures after the test iteratively.
The detected failures can be used to help experts revise the
SUT to perform safely under different settings.

1) Failure Approximation: Given the unknown complex
relationship between the failures and environment configu-
rations, the static solver approximates the failure numbers
in each test with a function f(x) drawn from a Gaussian
Process (GP) given the configuration x. Specifically, given
a collected dataset X = {(xi, f(xi))|i = 1, ...n}, GP can
predict the failure number fnext with the next configuration
value xnext. The posterior distribution fnext|X,xnext is a
normal distribution where the mean is:

K (xnext, X)K(X,X)−1f, (2)

and variance is:

K (xnext, xnext)−K (xnext, X)K(X,X)−1K (X,xnext) .
(3)

Here f is the vector with all function values in the collected
set, and K represents the matrix of the covariance functions.

2) Stress Testing Policy: Given the approximated failure
number f in the test, the static solver develops a policy
to modify configurations. An intuitive policy is to select
the configuration value that maximizes the expected value
of the failure number in the test. However, considering the
approximated function f can be inaccurate because of the
uncertainty in the large configuration space, we implement
a policy that maximizes the Upper Confidence Bound (UCB)
of the failure number. Specifically, the policy is defined as
follows with the tunable parameter k:

xnext = argmaxx[µ(x|X) + kσ(x|X)]. (4)

Here µ and σ represent the mean and standard deviation
respectively. This UCB-based policy can effectively minimize
regret over the optimization process and balance the trade-off
between exploration and exploitation [37].

Moreover, to guarantee the failures detected here are caused
by improper configurations instead of unsafe aircraft actions,
all aircraft are equipped with SUT to move in a safe way.

C. Hybrid AST Solver

While the dynamic and static solvers can find failures
caused by either unsafe aircraft actions or improper environ-
ment configurations respectively, they cannot detect failures
caused by the combinations of these two types of factors. How-
ever, their combinations interact with SUT complexly, making
the potential failures even more challenging to be detected.
Therefore, we propose a hybrid AST solver in this subsection
to detect failures caused by combination of dangerous aircraft
actions and improper environment configurations.

1) Stress Testing Policy: A bi-level hierarchical policy is
proposed in the hybrid solver. Specifically, the solver consists
of a high-level policy that chooses the environment configu-
ration and the number of AST agents before the test, and a
low-level policy that controls the actions of the AST agents
during the test. The failure information is sent back to the



solver for policy updating. Considering the complexity of the
hierarchical structure, we train the low-level policy with a PPO
network similar to that in dynamic solver and implement the
UCB policy as the high-level policy.

Given the hierarchical policy, the hybrid solver can find the
failures caused by combining the aircraft dynamics and envi-
ronment configurations. The information can help understand
the influence of the combination of these factors on SUT.

D. Integration

To comprehensively validate the safety of DRL-based air-
craft separation assurance systems, we integrate the dynamic
solver, the static solver, and the hybrid solver together into
the MAHAST framework. We illustrate its architecture in
Figure 2.

On a high level, the MAHAST framework detects failures
of SUT by modifying the configurations and controlling the
actions of aircraft in the test environment. The failure infor-
mation can then be used to refine the SUT and improve its
safety.

Given different system failures to be validated, users can
select specific AST solvers accordingly. Specifically, the fail-
ures from dangerous aircraft actions can be detected by the
dynamic solver through guiding the actions of AST agents
during the test. Failures resulting from improper environment
configurations or environment changes can be found by the
static solver, which modifies the environment configuration
before each test. Failures due to combinations of multiple
factors in the test environment can be sought by the hybrid
solver, which controls both the environment configuration and
AST agent actions.

V. EXPERIMENTS

In this section, we first introduce the experiment setups
and then conduct a series of experiments to evaluate the
effectiveness of the proposed solvers in detecting the failures
with different causes on the BlueSky environment [16].

A. Experiment Setups

Test Environment. In this work, we used the Bluesky [16]
simulator as our test environment. BlueSky is an open source
air traffic simulation environment which allows for realistic
real-time air traffic scenarios. For each test episode, 30 aircraft
will enter the airspace and the inter-arrival time follows a
discrete uniform distribution over 4, 5, and 6 minutes. The
test episode ends after all 30 aircraft reach the termination
criteria. To further decrease the impact of noise, we impose
a setting to make sure all aircraft cannot deviate from their
routes during the episode.
Evaluation metric. We adopt the Average Number of Failed
Aircraft (ANFA) as the metric to evaluate the performance.
Specifically, ANFA calculates the average number of aircraft
that have conflicts with others in a test episode. ANFA
measures the frequency of detected failures, and a higher
ANFA means that more failures are detected.
System Under Test. Deep Distributed Multi-Agent Reinforce-
ment Learning (DD-MARL) framework [2] is used as the SUT

TABLE I: Average Numbers of Failed Aircraft (ANFA) for
dynamic solver with no communication loss in 200 episodes.
Each column denotes a specific conflict class. D and B
represent the dynamic solver and baseline.

Setting AST-AST AST-SUT SUT-SUT Total
D B D B D B D B

5 AST 0.16 0.40 4.97 4.53 0.17 0.27 5.30 5.20
2 AST 0.03 0.03 3.52 1.88 0.34 0.21 3.89 2.12
1 AST 0.00 0.00 1.84 1.03 0.18 0.17 2.02 1.20

in our evaluation as it maintains state-of-the-art performance
in DRL-based aircraft separation assurance tasks, which makes
the validation challenging. DD-MARL uses a DRL model to
maintain safe separation for SUT agents by providing speed
advisories.

B. Evaluation of Dynamic Solver with No Communication
Loss

We first evaluate the effectiveness of the dynamic solver in
finding failures caused by unsafe aircraft actions. To make a
comprehensive evaluation, we conduct three tests given three
different numbers of AST agents in the environment. Each test
runs 200 episodes to eliminate the influence of randomness. To
provide thorough comparisons, we introduce a baseline solver
that uniformly samples the action of the AST agent. We further
suppose that there is no communication loss among aircraft in
this experiment, so each aircraft can receive information from
all the surrounding aircraft in the environment.

The ANFA values are shown in Table I. Each row reports
the ANFA of a test given a particular number of AST
agents. To gain more insights, we categorize the conflicts into
three classes depending on the participants: AST-AST, AST-
SUT, and SUT-SUT. For example, AST-AST conflict is the
conflict that happens between two AST agents. The first three
columns show the results of three conflict classes and the
last column shows the total number of ANFA. The results
of our proposed method and the baseline are shown in two
different subcolumns under each column, denoted as D and
B respectively.

We notice that the ANFA value is 2.02 with only 1 AST
agent in the environment. This implies that the DRL models
can be vulnerable to unsafe actions from other agents, which
demonstrates the necessity of the safety validation system.

Moreover, we observe that the dynamic solver consistently
beats the performances of the baseline by finding more failures
given all three numbers of AST agents. This verifies the
effectiveness of the dynamic solver in detecting the failures
due to unsafe aircraft actions, as the proposed solver can
efficiently directly force the AST agents to move in an unsafe
way, leading to more failures with other aircraft.

C. Evaluation of Dynamic Solver with Communication Loss

We have demonstrated the effectiveness of the dynamic
solver when there is no communication loss in the test.
However, the communication systems may not always work



TABLE II: Average Numbers of Failed Aircraft (ANFA) for dynamic solver with communication loss in 200 episodes. Each
column denotes a specific conflict class. D and B represent the dynamic solver and baseline.

Setting AST-AST AST-LC AST-SUT LC-LC LC-SUT SUT-SUT Total
D B D B D B D B D B D B D B

5 AST,10 LC 0.20 0.39 3.45 1.64 4.81 2.42 0.59 0.71 3.83 4.02 0.24 0.09 13.12 9.27
5 AST,5 LC 0.46 0.47 1.20 0.81 5.12 3.48 0.13 0.12 3.07 3.09 0.25 0.19 10.23 8.16
5 AST,2 LC 0.22 0.32 0.72 0.34 7.39 4.00 0.03 0.01 1.75 1.57 0.47 0.20 10.58 6.44
5 AST,1 LC 0.45 0.48 0.20 0.17 7.41 3.94 0.00 0.00 0.78 0.78 0.27 0.19 9.11 5.56
2 AST,10 LC 0.01 0.04 1.51 0.81 1.94 1.09 0.68 0.64 5.30 4.89 0.14 0.13 9.58 7.60
2 AST,5 LC 0.03 0.06 0.72 0.44 2.85 1.56 0.11 0.10 3.41 3.81 0.24 0.15 7.36 6.12
2 AST,2 LC 0.04 0.05 0.32 0.12 3.24 1.67 0.00 0.01 2.01 1.77 0.42 0.19 6.03 3.81
2 AST,1 LC 0.01 0.02 0.10 0.05 1.88 2.04 0.00 0.00 0.98 0.96 0.17 0.19 3.14 3.26
1 AST,10 LC 0.00 0.00 0.69 0.38 1.11 0.71 0.67 0.74 5.48 5.38 0.14 0.07 8.09 7.28
1 AST,5 LC 0.00 0.00 0.30 0.20 1.50 0.92 0.15 0.15 3.90 3.91 0.23 0.24 6.08 5.42
1 AST,2 LC 0.00 0.00 0.15 0.10 1.65 0.89 0.02 0.03 1.64 1.76 0.27 0.11 3.73 2.89
1 AST,1 LC 0.00 0.00 0.07 0.04 1.74 1.05 0.00 0.00 0.97 1.04 0.12 0.18 2.90 2.31

perfectly, so some aircraft may be unable sense the sur-
rounding aircraft [25]. This increases the complexity of the
validation because it requires the AST solver to consider the
behaviors of both the SUT agents and the agents that cannot
communicate.

To evaluate whether the dynamic solver can still detect
failures under this complex situation, we first introduce a novel
Loss of Communication (LC) agent into the problem and then
conduct a series of tests given different numbers of LC, SUT,
and AST agents in the environment.

Since the LC agent can not receive the information from the
surrounding aircraft, a reasonable strategy of LC agent is to
maintain the same speed and avoid speed changes. Therefore,
we set the LC agents to always maintain the same speed at
each time step.

Table II reports the ANFA for 200 episodes given different
numbers of SUT and LC agents in the test environment. In
this experiment, a baseline AST solver that uniformly samples
the action is used for comparison. Similar to the previous
experiment, each column displays the results for a specific
conflict class based on its participants. Each row shows the
results given a particular combination of AST and LC agents.

Overall, the dynamic solver gives a higher total ANFA value
than the baseline in most cases under this complex condition,
consistent with the results in the previous experiments with
no communication loss. This demonstrates the superiority
of applying MARL into AST, as the proposed method can
overcome the negative influence of communication loss and
find more failures.

We also observe that the proposed dynamic solver can
detect more SUT-SUT failures than the baseline in almost
all cases. This shows that although the solver cannot directly
control the SUT agents, the non-cooperative behaviors of AST
agents can also force some unsafe actions of the SUT agents,
leading to more conflicts where only SUT agents are involved.
This should benefit from our centralized learning decentralized
execution design given the central PPO network learns the
diverse failure modes during training and then encourages
cooperation among AST agents to push the SUT agents to
move unsafely.

(a) Best ANFA (b) Sample Distance

Fig. 4: Evaluation results for static solver on configuration
of the minimum calibrated airspeed vmin. The x-axis of
both plots represents the iteration numbers. Figure 4a shows
the best Average Number of Failed Aircraft (ANFA) till
each iteration, and Figure 4b shows the Euclidean distance
between consecutively sampled points in each iteration. A
large distance represents that the points are far apart and the
policy is exploring; a small distance shows that the points are
close and the policy focuses more on exploiting. In this case,
the maximum allowed sample distance is 124.

In addition, we have two observations about communication
loss. Firstly, given any fixed number of LC agents, increasing
the number of AST agents can always lead to more failures.
This validates the effectiveness of the dynamic solver as
it can detect failures under communication loss. Secondly,
controlling the number of AST agents, there is no clear
pattern indicating that more LC agents result in more SUT-
SUT collisions. This fact implies that SUT can still help SUT
agents maintain safety separation to some degree even with
the existence of some LC agents.

D. Evaluation of Static AST Solver with Single Configuration

Since we have demonstrated the effectiveness of the dy-
namic solver, in this subsection, we focus on whether the static
solver can detect failures caused by the improper value of a
single environment configuration. To provide thorough com-
parisons, we also introduce a baseline solver that uniformly



TABLE III: Best Average Numbers of Failed Aircraft (ANFA)
for static solver based on the configuration of the minimum
calibrated airspeed vmin. Static and Baseline represent the
results of static solver and baseline.

Static Baseline

Best ANFA 1.60 1.00

samples the values of environment configuration. Specifically,
we concentrate on the minimum calibrated airspeed vmin, one
of the most important configurations of the test environment.
The sample space is set to be continuous between 156 and 280
knots. To eliminate the influence of unsafe actions, all aircraft
are controlled by SUT to maintain safe separation. We also
suppose there is no communication loss in this experiment.

To comprehensively analyze the optimization process, we
show the detailed run-time optimization results of the proposed
static solver in Figure 4 instead of only providing the final
ANFA values. Specifically, Figure 4a shows the best ANFA up
to the current iteration. Figure 4b gives the Euclidean distance
between the two consecutively sampled points from the sample
space for the current iteration. When the distance is large, the
points are far apart as the stress policy tends to explore widely;
otherwise, the points are close to each other since the policy
tends to exploit the information.

Based on Figure 4b, we observe that the static solver ex-
plores in the first 10 iterations because the sample distances in
the right plot tend to be larger than in the later iterations. At the
same time, the best ANFA in Figure 4a keeps increasing during
the exploration, showing that new failures are detected in the
process. Afterwards, the sample distances become smaller in
the next iterations, showing that the static solver tends to focus
more on a small region based on the gathered information.
More failures are also found in the period as the best ANFA
increases again. The changes in sample distances show the
trade-off between the two components in the UCB policy, as
it does not simply aim to find more failures but also considers
the uncertainty in space.

The final results of our proposed static solver and the
baseline solver are reported in Table III. Specifically, the best
ANFA detected by the static solver is 1.60 while the best
ANFA detected by the baseline is only 1.00. The comparison
demonstrates that the proposed static solver can effectively de-
tect failures due to the improper value of a single environment
configuration with the help of Bayesian Optimization.

E. Evaluation of Static AST Solver with Multiple Configura-
tions

We have demonstrated the effectiveness of the static solver
given only one environment configuration. However, values
of multiple configurations can change in real-world scenar-
ios. This increases the complexity of the validation due to
the high dimensional sample space. In this subsection, we
evaluate the effectiveness of the static solver given improper
values of multiple environment configurations. Specifically, we

TABLE IV: Best Average Numbers of Failed Aircraft (ANFA)
for static solver based on the configurations of the minimum
calibrated airspeed vmin and the maximum calibrated airspeed
vmax. Static and Baseline represent the results of static solver
and baseline.

Static Baseline

Best ANFA 5.40 2.60

concentrate on the minimum calibrated airspeed vmin and the
maximum calibrated airspeed vmax. The sample space of vmin

is a continuous space between 156 and 280 knots. And that
of vmax is a continuous space between 300 and 346 knots.

To give a comprehensive comparison, we also use the
baseline solver that uniformly samples the environment con-
figuration values. The final results are reported in Table IV.
Specifically, the best ANFA detected by the static solver is 5.40
while the best ANFA detected by the baseline is only 2.60.
The results demonstrate that the proposed static solver can
detect failures due to improper values of multiple environment
configurations effectively. In addition, comparing the results
with two configurations in Table IV and one configuration in
Table III, we find that the performance of the static solver
improves more than that of the baseline when the dimension
number of sample space increases. The possible reason may
be that the 2-dimensional sample space is too complex for the
baseline to find the failures.

F. Evaluation of Hybrid AST solver

We evaluate whether our proposed hybrid solver can detect
the failures caused by combinations of unsafe actions and
improper configurations in this subsection. To make a fair
comparison, we here focus on the combined effects of the
factors that have been examined in previous experiments.
Specifically, we concentrate on the combination of the mini-
mum calibrated airspeed vmin and the unsafe aircraft actions.
The hybrid solver modifies the values of vmin and the number
of AST agents before each test and controls the actions of all
AST agents during the test. The sample space of vmin is set to
be between 156 and 280 knots. The number of AST agents can
be 1, 2, or 5. A baseline solver is implemented for comparison
which uniformly selects the configuration values and actions
of AST agents.

The run-time optimization plot is drawn in Figure 5 to
provide detailed results with the hybrid solver. Figure 5a shows
the best ANFA till each iteration and Figure 5b shows the
sample distance in sample space. Based on Figure 5a, we find
that the hybrid solver has been trapped in multiple local optima
during the optimization. This may relate to the fact that the
complex 2-dimensional sample space makes the optimization
a challenging problem.

The final results of the hybrid solver and the baseline are
reported in Table V. Specifically, the highest ANFA found by
the hybrid solver is 7.00 while that by the baseline is 4.80. The
comparison demonstrates the effectiveness of our proposed



(a) Best ANFA (b) Sample Distance

Fig. 5: Evaluation results for hybrid solver based on the config-
urations of the minimum calibrated airspeed vmin and unsafe
actions of AST agents. The x-axis of both plots represents the
iteration numbers. Figure 5a shows the best Average Number
of Failed Aircraft (ANFA) till each iteration, and Figure 5b
shows the Euclidean distance between consecutively sampled
points in each iteration. In this case, the maximum allowed
sample distance is 128.

TABLE V: Best Average Numbers of Failed Aircraft (ANFA)
for hybrid solver based on the configuration of the minimum
calibrated airspeed vmin and unsafe actions of AST agents.
Hybrid and Baseline represent the results of hybrid solver and
baseline.

Hybrid Baseline

Best ANFA 7.00 4.80

hybrid solver in detecting failures due to combinations of
unsafe actions and improper configurations.

VI. CONCLUSIONS

In this article, we propose MAHAST, a multi-agent adap-
tive stress testing framework, for the safety validation of
DRL-based aircraft separation assurance systems. Three AST
solvers are included in MAHAST to detect system failures
due to different causes, namely, a dynamic AST solver, a
static AST solver, and a hybrid AST solver. The dynamic
solver incorporates a PPO network to comprehend the move-
ments of the SUT, detecting the failures caused by unsafe
aircraft actions during the test. In the static solver, we in-
troduce a Bayesian Optimization approach to iteratively find
the improper environment configurations leading to the most
failures. Finally, we design a hybrid solver which can detect
the failures caused by the combinations of multiple factors
in the environment based on a bi-level hierarchical policy.
We conduct extensive experiments in the real-time air traffic
simulation environment provided by BlueSky. The results
empirically demonstrate that MAHAST can effectively detect
failures caused by multiple causes and validate the system
safety of DRL-based aircraft separation assurance systems in
high-density air traffic.
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