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This paper introduces a decision-making framework for Urban Air Mobility (UAM) and

Unmanned Aerial Systems (UAS) operations that addresses the dual challenges of collision safety

and battery energy constraints. To address these issues, the paper proposes a novel two-layer

algorithmic framework that conducts pre-departure flight planning and flight mission risk

assessment in relation to available battery energy. The upper layer is responsible for strategic

de-confliction, while the lower layer performs prognostics and decision-making regarding the

execution of the mission. The efficacy of this framework is demonstrated in a UAS scenario

designed for package delivery in the University Park area of the Dallas-Fort Worth metropolitan

region. The results highlight the framework’s potential to enhance safety and energy efficiency

in UAM and UAS operations.

I. Introduction
Urban Air Mobility (UAM) is a novel concept in which partially or fully autonomous air vehicles transport passengers

and cargo in dense urban environments. This innovative technology aims to offer a safe, efficient, and accessible

alternative to traditional ground-based transportation methods. As it advances, UAM is expected to connect urban

centers with outlying areas, thereby expanding the reach of metropolitan regions [1].

The development of UAM is projected to evolve from initial low-density, simple operations to an advanced stage of

highly automated, dense, and complex on-demand services [2]. These services will likely involve hundreds to thousands

of simultaneous urban airspace operations. To achieve this, the development and use of automated tools, known as

providers of services (PSU), are crucial. These tools aid in the planning and decision-making process, with a primary

focus on ensuring the safe operation of aircraft in this safety-critical application.

This paper specifically addresses two major factors that influence the safety performance of UAM operations: the

potential for collisions between aircraft and the challenges posed by insufficient battery energy. In the context of UAM,

strategic de-confliction is envisioned to manage separation assurance and collision avoidance [3], where part of the
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airspace is reserved for an aircraft before its departure, ensuring that no other aircraft can use it simultaneously.

On the other hand, given that UAM is expected to rely on electric-powered aircraft, commonly referred to as

eVTOLs (electric vertical takeoff and landing aircraft), the feasibility of strategically de-conflicted flight plans could

be compromised by insufficient battery energy. To address this, the paper presents an automated tool that performs

pre-departure flight planning and flight mission risk assessment, considering available battery energy.
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Fig. 1 Working principle of the proposed framework.

Therefore, the overall objective of this paper is to introduce a decision-making framework that facilitates the

generation of energy-optimal and strategically de-conflicted flight plans, as well as the assessment of risks associated with

insufficient battery energy. To address this challenge, we present a comprehensive algorithmic framework, illustrated in

Figure 1, which employs a two-layer approach. The upper layer is responsible for safe and energy-optimal trajectory

planning, while the lower layer handles prognostics and decision-making regarding the execution of the mission. It is

important to note that while this framework is applicable to any electric-powered aerial transportation, including larger

eVTOLs used for passenger transport in UAM, the focus of this paper is on a smaller unmanned aerial system (UAS) for

package delivery purposes, with a scenario implemented in the Dallas-Fort Worth (DFW) area.

2



II. Related Work
In this study, we adopted unstructured airspace topology with free-flight concept of operation. Free flight concept of

operation has several advantages such as the ability to handle higher traffic density, as demonstrated in [4], and the

potential for fuel and time efficiency, as noted in [5, 6]. As a result, it is becoming increasingly prefered for UAM

applications [7].

The current body of literature exploring the feasibility of the free-flight operation concept is limited; nevertheless,

some prior works have addressed this issue in different contexts. Among these, Paielli, et. al. [8] discussed the problem

of estimating the conflict probability for aircraft, taking into account the uncertainty associated with the aircraft’s

trajectory and speed. Bowers, et. al. [9] proposed a method for assessing the feasibility of a proposed flight profile based

on several constraints, such as aircraft performance, airspace and traffic flow, and weather-related constraints. Wing, et.

al. [10] proposed a pilot-in-command (PIC) model for autonomous flight operations and evaluated the feasibility of the

concept by considering issues such as safety, security, and operational efficiency.

From a battery energy-related flight planning perspective, several previous studies have explored the impacts of

battery energy on the operational decision-making of autonomous flight systems. Corbetta et al. [11] presented a

framework to quantify uncertainty in mission success due to available battery energy, but only considered the power

train model of a UAV. Quinones-Grueiro et al. [12] studied the UAV navigation problem in urban environments while

taking the battery energy into account. Pradeep et al. [13] used an optimal control framework for a multi-rotor eVTOL

aircraft to achieve energy-efficient arrival with a required time of arrival constraint, and [14] proposed an approach to

generate wind-optimal trajectories for UAM missions with minimum energy consumption. Additionally, Schumann et

al. [15] introduced a prognostics-as-a-service (PaaS) framework for UAVs that monitors the health and state of charge of

the battery (SoC), among other features of the UAV online, communicates the state of the aircraft to ground controllers,

and can perform contingency planning. Furthermore, in [16], we considered complex aircraft and battery dynamic

models, along with actual wind forecasts, to examine the impact of battery energy on flight missions. However, none of

these studies addressed the coupled problem of multi-agent strategic de-confliction and the feasibility of each flight

mission with respect to the available battery energy before the aircraft takes off.

Therefore, the two key contributions of the paper are:

• We proposed a pre-departure flight planning framework that generates safe and energy-optimal trajectories.

• We proposed a prognostics-based pre-departure decision-making framework that takes into account the available

battery energy and decides whether to execute the mission.

III. Modeling and Solution Methods
The two major tasks of the proposed framework are pre-departure flight planning and mission risk assessment with

respect to battery energy. These tasks are carried out by the two layers of the framework: the lower layer and the upper
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layer. The upper layer is tasked with generating safe and energy-optimal trajectories for each agent in the environment,

guiding the aircraft from its starting point to its final destination, i.e., strategic de-confliction. On the other hand, the

lower layer takes the trajectories from the upper layer and applies a model-based prognostics architecture to compute the

risk of mission success and determine the feasibility of the mission. This section discusses the formulation of these two

layers.

A. Upper Layer: Trajectory Planner

The trajectory planner implemented in this paper, introduced in [7] and [17], represents the decision-making problem

as a Markov decision process (MDP). An MDP is defined as a tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑡), where 𝑠𝑡 ∈ 𝑆 is the state at time 𝑡,

𝑎𝑡 ∈ 𝐴 is the action chosen by the agent at time 𝑡 as a result of the decision process, and 𝑟𝑡 is the reward received by the

agent for executing 𝑎𝑡 from 𝑠𝑡 and reaching 𝑠𝑡+1. The transition function 𝑇 (𝑠𝑡 , 𝑎, 𝑠𝑡+1) is used to describe the dynamics

of the environment. The solution to MDP, the optimal policy 𝜋∗, specifies the optimal action 𝑎∗ ∈ 𝐴 to take from each

state 𝑠 ∈ 𝑆 to maximize the expected return. The maximum expected value obtained from each state 𝑠 ∈ 𝑆 is represented

by the optimal value function 𝑉∗ (𝑠), computed from 𝜋∗, with 𝜋∗ also being recoverable from 𝑉∗ (𝑠).

A significant update to the current planner, as compared to [17], is the inclusion of energy considerations in the

trajectory planning problem. Therefore, this paper focuses on highlighting the main components of the planner, with a

particular emphasis on the energy-related reward function. It is also worth noting that, although the trajectory planner is

designed for online guidance of aircraft in a free-flight manner, in this study, it has been employed offline to perform

pre-departure flight planning and strategic de-confliction.

1. State Space

The environment is a continuous state space placed on a rectangular area of 7 km2. Given the dynamics of an

aircraft:

¤Z (𝑡) = 𝑓 (Z (𝑡), 𝑢(𝑡)), (1)

where, 𝑓 : R𝑛 × R → R𝑛 is a continuous function. Z denotes the aircraft states. The trajectory of an aircraft

b : R𝑛 ×R≥0 → R𝑛 is the solution to the differential equation (1). For a given initial set 𝑥0 ∈ R𝑛, the state of the system

at time 𝑡 is b (Z0, 𝑡) = Z (𝑡). The control input 𝑢(𝑡) is comprised of the thrust 𝑇 , and the three torques 𝜏\ , 𝜏𝜓 , and 𝜏𝜓 . In

addition, a single state in the state space (𝑠𝑜) contains all the states of an aircraft (Z ) and the states of every other aircraft

denoted as 𝑓 𝑗 , ∀ 𝑗 ∈ 𝐽. Thus, we can define 𝑠𝑜 as 𝑠𝑜 = [Z, 𝑓1, ..., 𝑓 𝑗 ], where 𝑗 represents the number of other aircraft.
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2. Aircraft Dynamics

The state transition function 𝑇 (𝑠𝑡 , 𝑎, 𝑠𝑡+1) of the MDP-based decision maker is given by a 6-DOF low-fidelity

dynamic model of octo-rotors, adopted from [18], where inertia is described by lumped masses. The model employs

lumped masses to describe the inertia and provides a balance between accuracy and computational efficiency. As

such, it accurately represents the behavior of the aircraft without imposing excessive computational load. The model is

formulated in the state-space representation as shown in Equation 2, where 𝑠, 𝑐, and 𝑡 denote sin, cos, and tan functions,

respectively.

¤𝑥 =



¤𝑥

¤𝑦

¤𝑧

(𝑠\𝑐𝜓𝑐𝜙 + 𝑠𝜙𝑠𝜓) 𝑇
𝑚𝑡

(𝑠\ 𝑠𝜓𝑐𝜙 − 𝑠𝜙𝑠𝜓) 𝑇
𝑚𝑡

−𝑔 + 𝑐𝜙𝑐\
𝑇
𝑚𝑡

𝑝 + 𝑞𝑠𝜙𝑡\ + 𝑟𝑐𝜙𝑡\

𝑞𝑐𝜙 − 𝑟𝑠𝜙

𝑞
𝑠𝜙

𝑐\
+ 𝑟

𝑐𝜙

𝑐\

𝐼𝑦𝑏𝑦𝑏−𝐼𝑧𝑏𝑧𝑏
𝐼𝑥𝑏𝑥𝑏

𝑞𝑟 + 𝑙
𝐼𝑥𝑏𝑥𝑏

𝜏𝜙

𝐼𝑧𝑏𝑧𝑏−𝐼𝑥𝑏𝑥𝑏
𝐼𝑦𝑏𝑦𝑏

𝑝𝑟 + 𝑙
𝐼𝑦𝑏𝑦𝑏

𝜏\

𝐼𝑥𝑏𝑥𝑏−𝐼𝑦𝑏𝑦𝑏
𝐼𝑧𝑏𝑧𝑏

𝑝𝑟 + 𝑙
𝐼𝑧𝑏𝑧𝑏

𝜏𝜓



(2)

In the above equation, linear position and velocity variables are represented by 𝑠, ¤𝑠, and angular position and velocity

variables by [𝜙, \, 𝜓] and [𝑝, 𝑞, 𝑟], respectively. The state vector is defined as 𝑥 = [𝑠, ¤𝑠, 𝜙, \, 𝜓, 𝑝, 𝑞, 𝑟]𝑇 . Additionally,

𝑔 denotes the gravitational constant, 𝑚𝑡 represents the lumped mass, and 𝑙 is the arm length.

3. Action Space

The action space of the MDP is composed of the individual action spaces of the four inputs: the thrust 𝑇 , and three

torques 𝜏\ , 𝜏𝜓, and 𝜏𝜙. The action space of 𝑇 is composed of 10 linearly spaced discrete values between 0𝑁𝑚 and

200𝑁𝑚. The chosen minimum and maximum values are determined by the performance capabilities of the motors

(KDE-4213XF motors) in terms of the delivered thrust and torque. Consequently, the inputs of 𝜏\ , 𝜏𝜓, and 𝜏𝜙 are

logarithmically spaced within a range of 10 input values.
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The logarithmically spaced input set in degree/second is computed as follows:

𝜏\ = [−100.00,−31.62,−10.00,−3.16,−1.00, 10.00, 17.78, 31.62, 56.23, 100.00] (3)

𝜏𝜓 = [−100.00,−31.62,−10.00,−3.16,−1.00, 10.00, 17.78, 31.62, 56.23, 100.00] (4)

𝜏𝜙 = [−100.00,−31.62,−10.00,−3.16,−1.00, 10.00, 17.78, 31.62, 56.23, 100.00] (5)

Finally, the joint action space becomes:

A = {𝑇, 𝜏\ , 𝜏𝜓 , 𝜏𝜓}. (6)

4. Reward Function

The reward function is the primary mechanism to control the behavior of an MDP agent. It is defined as 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1),

representing the reward an agent collects when it transitions from state 𝑠𝑡 to 𝑠𝑡+1 after taking action 𝑎𝑡 . In this work,

we have utilized both positive and negative rewards, as depicted in Table 1, to guide the aircraft to their destination

while avoiding potential collision with nearby aircraft. Additionally, negative rewards have been introduced to reduce

maneuvers that result in high energy consumption.

The type of trajectory generated and the maneuvers required to execute it are crucial in determining the feasibility of

a flight mission concerning the available battery energy. This necessitates the generation of an energy-optimal trajectory,

a concept often referred to as trajectory optimization in the literature [19]. To achieve this, our reward function penalizes

the trajectory planning agent for generating trajectories that demand excessive energy. Since the trajectory planner

inherently operates as a finite horizon decision-making framework, penalizing changes in aircraft positions (Δ𝑥,Δ𝑦,Δ𝑧)

that lead to high energy consumption is an effective strategy.

To this end, we trained the following regression model that predicts energy consumption based on changes in aircraft

positions.

Econs = A⊤ · Δd + B⊤ (7)

where A⊤ and B⊤ are the transposed coefficient vectors of the energy consumption model, they are defined as follows:

A = [0, 520.699, 203.742, 127.606, 86.3024, 71.8159, 63.1053, 57.9294, 50.7294, 46.399],

B = [0, 369.168, 869.01, 1119.61, 1459.52, 1368.97, 1279.89, 1128.54, 1144.29, 1183.82] .

In addition, the vector Δd = [Δ𝑑1,Δ𝑑2, . . . ,Δ𝑑𝑛] represents the change in distance traveled by the aircraft from its
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current position to the 𝑛𝑡ℎ future state and can be mathematically described as:

Δ𝑑𝑛 =

𝑛∑︁
𝑖=1

√︃
(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 + (𝑧𝑖 − 𝑧𝑖−1)2 (8)

This regression model, multiplied by a constant factor ^, serves as a reward function to penalize the trajectory

planning agent when it attempts to generate a trajectory that leads to high energy consumption.

Table 1 Reward Functions for Each Aircraft

Reward Source Reward Magnitude Location Decay Factor Purpose

Intruder aircraft −(100𝑡 + 500) Intruder 0.97 Collision avoidance
Destination 200 Manually placed 0.999 Vertiport attraction

Energy consumption ^(A⊤ · Δd + B⊤) Aircraft next states 0 Minimize energy consumption

The trajectory planner first assigns the initial and goal states for each aircraft in the system. Then, for each aircraft,

it identifies the positive and negative reward sources as discussed in III.A.4. Once the reward sources are identified,

it forward projects the future states of the aircraft using the action sets and computes the values of each future state

using the value function. Then, it picks the best action that yields the maximum total reward and updates the states of

the aircraft using the selected control action. This procedure will be carried out for each aircraft iteratively until each

aircraft reaches its destination vertiport.

B. Lower Layer: Battery Prognostics and Decision Making

A key task in assessing the risk of a mission related to battery energy is predicting the battery’s state of charge (SoC)

at the end of the flight mission. The SoC of a battery is typically defined as 1 when the battery is fully charged and

0 when it is discharged to a predetermined voltage threshold. Such a task is known as prognostics, and we adopted

model-based prognostics architecture from [20] and its implementation from [21]. The architecture is summarized as

follows:

Given a system model defined as:

𝑥(𝑘 + 1) = 𝑓 (𝑘, 𝑥(𝑘), \ (𝑘), 𝑢(𝑘), 𝑣(𝑘)), (9)

𝑦(𝑘) = ℎ(𝑘, 𝑥(𝑘), \, 𝑢(𝑘), 𝑛(𝑘)), (10)

where 𝑘 is the discrete time variable, 𝑥(𝑘) ∈ 𝑅𝑛𝑥 is the sate vector, \ (𝑘) ∈ 𝑅𝑛\ is unknown parameter vector, 𝑢(𝑘) ∈ 𝑅𝑛𝑢

is the input vector, 𝑣(𝑘) ∈ 𝑅𝑛a is the process noise vector, 𝑓 is the state equation, 𝑦(𝑘) ∈ 𝑅𝑛𝑦 is the output vector,

𝑛(𝑘) ∈ 𝑅𝑛𝑛 is the measurement noise vector, and ℎ is the output model.

The battery model utilized in this study is an electrochemical-based model of Lithium-ion batteries, as described in
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[20], which are a popular choice for powering unmanned aerial vehicles. In this model, the battery’s current draw (𝐼)

serves as the input, while the battery temperature (𝑡𝑏) and the voltage drop caused by solid-phase ohmic resistance (𝑉𝑜)

represent its outputs (𝑦(𝑘)).

The prognostics architecture comprises two major steps: estimation and prediction. the joint state-parameter estimate

𝑝(𝑥(𝑘), \ (𝑘) |𝑦(𝑘0 : 𝑘)) is computed using the system dynamics and observation history up to time 𝑘 represented as

𝑦(𝑘0 : 𝑘). On the other hand, in the prediction step, the probability distribution 𝑝(𝑘𝐸 (𝑘𝑃) |𝑦(𝑘0 : 𝑘𝑃)) at prediction

time 𝑘 𝑝 is computed using the joint state-parameter estimate and hypothesized future inputs of the system. The

estimation algorithm used in this paper is the Unscented Kalman Filter (UKF) [22], along with the battery model. The

UKF uses sigma points which are deterministic points that are used to represent the joint state-parameter distribution

𝑝(𝑥(𝑘), \ (𝑘), |𝑦(𝑘0 : 𝑘)). The predictor algorithm used in this paper is the Monte Carlo predictor [23], which randomly

samples from the battery’s current state distribution, and each sample is simulated to the end of the flight. By collecting

a set of SoC values from several Monte Carlo simulations, the probability distribution can be built, and the probability

of mission success at a given time 𝑡 can be computed using the following equation:

𝑃success (𝑡) =
∑𝑛

𝑖=1 (SoC𝑖 (𝑡) > SoCth)
𝑛

(11)

where 𝑛 represents the number of Monte Carlo simulations in the prediction step and SoCth is the threshold battery SoC

value required at the end of flight.
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Fig. 2 Schematic diagram representation of the battery’s SoC prediction procedure

The battery SoC prediction process is illustrated in Figure 2. According to the procedure, given a reference trajectory

and information about the available battery energy, the first step is to simulate the high-fidelity octo-rotor model adopted

from [24] along the trajectory to obtain the mission’s current requirement (𝐼req), which is used as a future load for

battery SoC prediction. Once the mission’s 𝐼req is known, the battery model will be simulated from its initial state until

SoC is reached. Finally, the predicted SoC points are collected, and the probability density function for battery SoC at
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the flight end time is constructed.

C. Overall Framework

The overall working procedure of the framework is presented in Algorithm 1. The inputs to the framework are the

aircraft’s initial state and destination, the battery’s initial state (𝑥0), and mission success probability threshold 𝑃threshold

to determine whether to conduct the mission or not. The framework’s output is the decision to either take off or hold the

aircraft. The first step is generating trajectories from start to destination for each aircraft. These trajectories are safe (in

terms of collision avoidance with other aircraft) and locally energy optimal. Next, before proceeding to the battery

prognostics process, we sample waypoints from the generated trajectories and feed those waypoints to the detailed

aircraft dynamics as a reference trajectory. Then, we run the detailed octo-rotor dynamics and collect the current

requirements of the missions. Once the current requirement is collected, we randomly sample from the battery’s initial

state and simulate the battery model until the end of the flight is reached.

Algorithm 1: Pre-departure Flight Planning and Mission Risk Assessment Framework
Procedure FlightPlanAndRiskAssessment():

Input : Aircraft initial state and destination, Battery initial state (𝑥0) and 𝑃threshold
Output : Decision to either take off or hold the aircraft

1 for each aircraft i do
2 Generate safe and energy optimal trajectory from start to destination
3 Obtain the current requirement of the trajectory
4 Perform Monte Carlo (MC) simulations of the battery using the current requirement
5 Construct End-of-Flight Battery SoC Probability Density Function (PDF) from MC simulation results
6 Compute the probability of mission success using Equation 11
7 if 𝑃success > 𝑃threshold then

Execute the mission
8 else

Keep charging the aircraft and/or re-plan the flight trajectory

9 End of operation

IV. Simulation and Results

A. Scenario Description

The scenario we used to implement the framework and test its performance is shown in Figure 4. This scenario,

designed for a package delivery application, is implemented for the University Park area of Dallas-Fort Worth

metropolitan region. It includes three depots from which aircraft are expected to take off, and random destination places

can be assigned within the 7 km2 rectangular area.
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Fig. 3 Battery SOC predictions for all aircraft
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B. Results

Although the environment can accommodate a configurable number of aircraft that use the proposed decision-making

framework, we present experimental results for a specific case involving six aircraft. These aircraft are assigned to

take off from three depots and fly to six different destinations. The safe and energy-optimal trajectories generated by

the upper layer of the framework are visualized in Figure 4. In the figure, the red rectangle depicts the rectangular

area considered within the DFW region for the package delivery scenario. Additionally, the strategically de-conflicted

trajectories for each aircraft, from their assigned depots to their destinations, are plotted in various colors.

Fig. 4 The drone package delivery scenario implemented in the University Park area of the Dallas-Fort Worth
metropolitan region

Moreover, the effect of the energy-related reward function discussed in Section III.A.4, on the overall power

consumption and cumulative energy of an aircraft is depicted in Figure 5. As illustrated in the figure, the trajectory

generated by the planner, which incorporates the energy-related reward function, shows a significant reduction in

cumulative energy consumption.
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Fig. 5 Power and cumulative energy comparison of two flight missions with and without energy-related reward
function

Once these trajectories are generated, we proceed to the lower layer of the proposed framework to perform prognostics

and mission risk assessment. We generated 500 Monte Carlo simulations to assess the feasibility of each mission.

Additionally, to determine the probability of mission success or failure, we established a threshold State of Charge

(𝑆𝑜𝐶th) value of 30% at the end of the flight. Figure 3 shows the SoC predictions for the six flight missions mentioned

above. Finally, to decide whether to conduct the mission or not, we used Equation 11 along with the constructed SoC

PDF, 𝑆𝑜𝐶th, and a probability threshold 𝑃threshold value of 95%. As mentioned in Algorithm 1, this 𝑃threshold value is

used to determine the execution of the mission. Specifically, in our case, if the probability of an aircraft arriving at its

destination with a SoC value of 30% is above 95%, then our framework will decide to execute the mission. Accordingly,

the final decisions for the mission shown in Figure 4 are given in Table 2.

Table 2 Mission Success Probabilities and Decisions

Mission ID Success Probability Decision

1 0.97 Cleared for Flight
2 0.00 Hold
3 1.00 Cleared for Flight
4 0.10 Hold
5 1.00 Cleared for Flight
6 1.00 Cleared for Flight
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V. Conclusion
This work addresses the problem of developing a decision-making framework that performs pre-departure flight

planning and flight mission risk assessment for UAM and UAS applications. The framework adopts a two-layer

approach, where the upper layer is responsible for strategic de-confliction, and the lower layer performs prognostics and

decision-making regarding the execution of the mission. We showcased the performance of the framework in a UAS

scenario designed for package delivery application in the University Park area of the Dallas-Fort Worth metropolitan

region. The results indicate the framework’s potential to enhance safety and energy efficiency in UAM and UAS

operations.
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