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We propose a new method to identify similar thunderstorm spatial-temporal sequences
to support airline operations based on the optimal transport theory. Different from existing
geometric methods, which often suffer from over-approximation of the covering geometric
objects, our method models each thunderstorm as a probability distribution supported by the
observed weather data. The core of our approach lies in measuring the similarity between
thunderstorm sequences through the Wasserstein distance of their respective probability
distributions. By setting different time weights and filter functions, this method can also
incorporate the temporal features of the thunderstorms and consider the weather impact on
key airspace/airport infrastructures. Furthermore, we apply a clustering algorithm within the
probability distribution space of thunderstorms to categorize common patterns of archived
thunderstorms in a given airspace region. We illustrate the effectiveness of this new method
with our results with real-world weather data in the Dallas Fort Worth airspace.

I. Introduction
Understanding the impact of convective weather on airline operations remains a complex challenge. Thunderstorms

moving near major hub airports frequently result in departure and arrival delays, flight cancellations, diversions, and
airborne holdings. Although several meteorological models exist for forecasting short-term thunderstorm movements, it
is crucial for airline operators to identify similar thunderstorms to better comprehend their impacts across different
categories. This identification also offers operational references for dealing with similar historical thunderstorm events.

Several methods have been proposed for identifying/clustering similar thunderstorms in the literature. One common
approach involves using convex polygons or ellipses to represent the thunderstorm-affected areas [1–4], with similarities
defined by shapes’ resemblances. However, these shape-based models often suffer from over-approximation and
inconsistencies at different scales. Another prevalent method is the fractions skill score (FSS) [5], which involves
dividing the space into a grid, assigning density values to each grid based on the number of thunderstorm points relative
to the size of a local area, and then calculating similarity through density function differences. However, this approach
is only doing well in snapshots, and can not be extended to thunderstorm sequences. Our approach, while sharing
similarities with the FSS method, offers a distinct and innovative perspective on this challenge.

Distinct from the shape-based models prevalent in existing literature, our approach employs probability distribution-
based models, initially proposed in the machine learning community [6, 7] for applications, such as image retrieval [7],
face recognition [6], and hand-gesture recognition [8]. Compared to shape-based models, probability distribution-based
models enjoy a strong capability to represent the data. It treats each dataset as a probability distribution and defines
dataset similarity based on the similarity of these distributions. Common measurements for assessing probability
distribution similarity include the Kullback–Leibler (KL) divergence, Euclidean distance, and the Wasserstein distance.
While KL divergence is often used to measure disorders, the Wasserstein distance is preferable for quantifying differences
in terms of energy.

We opt for the Wasserstein distance for two key reasons. Firstly, it is versatile enough to encompass both
continuous and discrete distributions, unlike other measurements like KL divergence, which can falter when comparing
a discrete distribution with a continuous one. Secondly, the Wasserstein distance satisfies critical metric properties like
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indiscernibility, non-negativity, symmetry, and triangle inequality, which the KL divergence does not satisfy. These
make the Wasserstein distance a more reliable metric for our purpose of measuring similarity in probability distributions.

In our probability distribution-based model, each thunderstorm radar image (snapshot) or video (sequence) is treated
as a comprehensive probability distribution, representing all the thunderstorm points within. The similarity between
two thunderstorm sequences is quantified using the Wasserstein distance between them. To enhance the flexibility and
applicability of this approach, we have integrated two key techniques:

Temporal Dimension Integration: by incorporating a time axis into the probability distribution space, each
thunderstorm point is endowed with temporal information. This addition allows for a more holistic capture of temporal
features, such as the direction of movement and duration of the thunderstorms, integrating these aspects seamlessly into
the probability distributions.

Filter Functions: to tailor our model to various airline operational needs, we incorporate filter functions. These
functions enable customization based on different operational considerations, integrating essential flight operation
features, such as merging fixes, and airport runway orientations and gates. As a result, the distribution can be variably
weighted to reflect airline operations in specific geolocations and time frames.

Apart from identifying similar thunderstorms, we also explore clustering thunderstorms with respect to the
probability distribution space to understand the thunderstorm’s patterns and categories. While numerous clustering
algorithms exist, such as K-means, Gaussian Mixture Model (GMM), density-based spatial clustering of applications
with noise (DBSCAN) [9], The Balance Iterative Reducing and Clustering using Hierarchies (BIRCH) [10], and
Ordering Points To Identify the Clustering Structure (OPTICS) [11], we specifically select the OPTICS algorithm for
clustering thunderstorms, based on two pivotal considerations: (1) The probability distribution space, structured with
the Wasserstein distance, is a metric space rather than a Euclidean one. This distinction means certain properties,
like means and inner products, are not well-defined in this space, making some algorithms, like K-means and GMM,
fail for clustering; (2) The OPTICS algorithm can provide an interpretable visualization of high-dimensional data for
decision-making, whereas the other algorithms can not provide such information.

The structure of our paper is organized as follows. Section 2 discusses related work and the background of the optimal
transport theory and the Wasserstein distance. In section 3, we propose our method to identify similar thunderstorm
sequences and two techniques, integrating temporal coordinates and filter functions. Meanwhile, we also show the
computational complexity of the proposed algorithm and how to use the OPTICS algorithm to cluster the distributions.
In section 4, we compare our method with the FSS method. Finally, in section 5, we show experimental results with
snapshots and sequences comparison and clustering results based on the OPTICS algorithm.

II. Related Work and Background
In this section, we present an overview of existing methodologies for identifying analogous weather conditions

and provide a comprehensive background on the optimal transport theory. This exploration includes a critical analysis
of previous approaches, highlighting their strengths and limitations in the context of weather pattern identification.
Additionally, we delve into the foundational concepts of optimal transport theory.

A. Shape-based Methods to Identify Similar Patterns
Shape-based models are a prevalent choice for measuring the similarity of thunderstorm snapshots, as seen in various

studies [2–4, 12]. These models primarily focus on the geometrical shapes formed by point clouds in thunderstorm data,
such as triangles, circles, polygons, squares, or ellipses. The similarity between these point clouds is determined based
on the resemblance of their shapes. The key advantages of shape-based models lie in their computational efficiency and
intuitive interpretability.

However, these models encounter significant challenges due to the typically unstructured and complex patterns
of thunderstorm points. This complexity makes it difficult for shape-based methods to provide consistent results
across different scenarios. Moreover, they exhibit a heightened sensitivity to noise, particularly when the point clouds
representing the data points are sparse.

B. Fractions Skill Score
The Fractions Skill Score (FSS) assesses the agreement between a forecast and an observed field by examining

the fraction of grid points exceeding a specific threshold within a neighborhood around each point [13, 14]. A perfect
forecast achieves an FSS of 1, indicating complete agreement, while a “no skill” forecast has a score of 0. The advantage
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of this approach is to evaluate the skill of spatial forecasts, especially when dealing with high-resolution models that
provide detailed but potentially misplaced information.

C. Optimal Transport Theory and the Wasserstein Distance
In the space of probability distributions, consider two distributions, `(𝑥) and a(𝑦), in the same 𝑛 dimension space.

The core of the optimal transport problem lies in determining the most energy-efficient transportation plan to transform
one distribution into the other, in accordance with a predefined cost function 𝑐(𝑥, 𝑦). This framework is versatile,
accommodating a range of distribution types including continuous, discrete, and semi-continuous.

The cost function 𝑐(𝑥, 𝑦) can also extended to any non-negative function. However, a common choice for this
function is |𝑥 − 𝑦 |𝑝 , which represents the distance as induced 𝑝 norm (with 𝑝 ≥ 1) [15]. Although demonstrating the
existence of a minimal transport cost for any given cost function can be challenging, it has been established that when
the cost function is defined as |𝑥 − 𝑦 |𝑝 , the optimal transport problem is well-defined [15, 16]. Under these conditions,
the existence of a minimal transport cost is guaranteed. This ensures the feasibility and applicability of the optimal
transport theory in scenarios where such a cost function is employed.

Based on the existence of minimal transport cost, We can define a metric for any two probability distributions, which
is referred as 𝑝−Wasserstein distance.

Definition 𝑝−Wasserstein distance [16].

𝑊𝑝 (`, a) :=

(
inf

𝛾∈Γ (`,a)

∫
R𝑛
|𝑥 − 𝑦 |𝑝𝑑𝛾(𝑥, 𝑦)

) 1
𝑝

s.t.
∫
R𝑛
𝛾(𝑥, 𝑦)𝑑𝑦 = `(𝑥),∀𝑥 ∈ R𝑛,∫

R𝑛
𝛾(𝑥, 𝑦)𝑑𝑥 = a(𝑦),∀𝑦 ∈ R𝑛,

(1)

where Γ(`, a) is the set of all possible couplings of ` and a. A coupling, denoted as 𝛾(𝑥, 𝑦) is a joint probability
measure function on R𝑛 × R𝑛, with ` and a serving as its marginals on the respective factors. These constraints ensure
the conservation of probability density or mass.

The true value of the Wasserstein distance is tantamount to the minimal transport cost between any two given
distributions. It is established that the Wasserstein distance qualifies as a true metric, adhering to the properties of
indiscernibility, non-negativity, symmetry, and the triangle inequality [16]. As such, it serves as an essential and
foundational concept in the study of distributional distances, providing a nuanced measure of how distant two given
distributions are from each other.

III. Methodology

A. The Probability Distribution Representation of Thunderstorms
In this section, we demonstrate the application of the Wasserstein distance in identifying similar thunderstorms using

real-world weather radar data. We first describe the probability distribution representation of thunderstorms, supported
by intensity data points. The intensity of thunderstorms can be estimated by the Vertically Integrated Liquid (VIL)
density [17]. The VIL density is calculated by the following formula:

VIL density =
VIL(𝑘𝑔/𝑚2)
Echo top(𝑚) × 1000, (2)

where VIL represents the total mass of precipitation in the clouds, derived from the reflectivity readings captured by
weather radar. The Echo top denotes the cloud’s height at a local area, as detected by radar. Studies have shown that the
VIL density has a strong positive correlation with the size of hail and the intensity of thunderstorms [17]. Specifically, a
VIL density exceeding 3𝑘𝑔 · 𝑚−3 typically indicates a high probability of thunderstorm occurrence in that region [17].
While VIL density is our primary parameter, reflectivity is another viable measurement for assessing thunderstorm
intensity, with a threshold value of 35 𝑑𝐵𝑍 . For the sake of simplicity and clarity in our ensuing analysis, we will focus
on using VIL density as our main indicator.
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(a) The VIL density of a thunderstorm. The lightness indicates the intensity
of the thunderstorm.

(b) The binarized thunderstorm points of the thunderstorm.

Fig. 1 VIL density value and thunderstorm points of a thunderstorm at 02:30-10/27/2021.

To facilitate efficient data storage and computation, we employ a binarization process for the thunderstorm data. In
this approach, we only consider pixels with a Vertically Integrated Liquid (VIL) density of 3 or higher as valid indicators
of thunderstorm activity. These selected pixels, representing valid thunderstorm points, are then used as the supports
for our probability distribution, with each point assigned an equal probability mass. For instance, if a thunderstorm
contains 𝑛 valid points, each point is assigned a probability mass 1

𝑛
.

To illustrate this process, Figure 1 presents a comparative visualization. Subfigure (a) displays the raw data,
showcasing the VIL density values across a thunderstorm. Subfigure (b), on the other hand, reveals the resulting
probability distribution post-binarization.

B. Similarity of Thunderstorms Defined by the Wasserstein Distance
After modeling thunderstorms with the probability distributions, we choose the Wasserstein distances of probability

distributions to define the similarity of thunderstorms. Our approach focuses on the binarized representation of
thunderstorm points, which simplifies the analysis to discrete cases only. This means that, instead of dealing with the
complexities of continuous distributions, our analysis is confined to the optimal transport problem in a discrete setting.
In this discrete framework, the Wasserstein distance provides a meaningful and computationally feasible measure of
similarity, as it quantifies the ’transportation cost’ of transforming one binarized thunderstorm distribution to another.

To delve into the specifics, let ` and a be source and target distributions, separately. Suppose ` has 𝑚1 support
points and a has 𝑚2 support points. The coordinates of these support points are denoted by {𝑥𝑖} for ` and {𝑦 𝑗 } for a,
where 1 ≤ 𝑖 ≤ 𝑚1 and 1 ≤ 𝑗 ≤ 𝑚2. Correspondingly, {𝑎𝑖} and {𝑏 𝑗 } represent the assigned probability masses for each
support point in ` and a, respectively.

The cost of transporting mass from point 𝑥𝑖 in ` to point 𝑦 𝑗 in a is represented by 𝐶𝑖 𝑗 , which is calculated using the
cost function 𝑐(𝑥𝑖 , 𝑦 𝑗 ) = |𝑥𝑖 − 𝑦 𝑗 |𝑝 .

With this setup, the task of computing the Wasserstein distance between these two discrete probability distributions
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transforms into a linear optimization problem as follows,

𝑊𝑝 (`, a) 𝑝 := min.
𝑃𝑖 𝑗

𝑚1∑︁
𝑖=1

𝑚2∑︁
𝑗=1

𝐶𝑖 𝑗𝑃𝑖 𝑗

s.t.
𝑚2∑︁
𝑗=1

𝑃𝑖 𝑗 = 𝑎𝑖 , 𝑖 = 1, ..., 𝑚1,

𝑚1∑︁
𝑖=1

𝑃𝑖 𝑗 = 𝑏 𝑗 , 𝑗 = 1, ..., 𝑚2,

𝑃𝑖 𝑗 ≥ 0, 𝑖 = 1, ..., 𝑚1, 𝑗 = 1, ..., 𝑚2,

(3)

where 𝑃𝑖 𝑗s are the decision variables, representing the probability mass transported from point 𝑥𝑖 to point 𝑦 𝑗 . Given that
our data is binarized, the probability mass 𝑎𝑖 , (1 ≤ 𝑖 ≤ 𝑚1), simplifies to 1

𝑚1
and similarly, 𝑏𝑖 , (1 ≤ 𝑖 ≤ 𝑚2), simplifies

to 1
𝑚2

. For practical computation, we primarily focus on using orders 𝑝 = 1 and 𝑝 = 2.
Figure 2 illustrates this concept effectively. It shows that when two thunderstorm points have similar distributions,

the cost of transporting the probability mass between them is lower compared to points with more disparate distributions.
This visual representation underscores the utility of the Wasserstein distance in evaluating the similarity of thunderstorm
patterns, effectively capturing the cost implications of differences in the spatial distribution of the binarized fields.

(a) Wasserstein distance computed for a comparison of binarized points
from two cases given by blue and red dots. A relatively smaller cost,
approximately 26, is incurred in the process of transporting the source
points to the target points. This lower cost indicates a higher degree of
similarity between the source and target distributions

(b) Wasserstein distance computed for a comparison of binarized
points from two cases given by blue and red dots. A significantly larger
cost, estimated to be around 622, is necessitated for the transportation
of the source points to the target points. This higher cost suggests a
lower degree of similarity between the source and target distributions.

Fig. 2 The source distribution is depicted in blue, while the target distribution is represented in red. To clearly
demonstrate the optimal transport mappings, we use orange dashed lines. These lines effectively illustrate the
connections between corresponding points in the source and target distributions.

A simplified understanding of this linear optimization problem can be outlined as follows. The objective function
aims to minimize the total energy cost, which is conceptualized as the product of the transported probability mass and
the distance over which it is transported. This model operates under a few key constraints:

Inflow Balance: This set of constraints ensures that the total mass transported from a specific point equals the mass
initially present at that point.
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Outflow Balance: These constraints ensure that the total mass received at a given point is equivalent to the mass
required at that point.

Non-Negativity: The final set of constraints confirms that the concept of “mass” remains non-negative.
Together, these constraints form the backbone of the linear optimization problem, guiding the solution towards a

feasible and realistic transport plan that reflects the actual dynamics of mass transportation.
In the following, we would like to show two techniques, temporal dimension integration and filter functions, to

enable a more tailored and accurate representation of probability distributions in real-world scenarios.

C. Temporal Dimension Integration
The first technique involves enriching the probability distribution with temporal information. To achieve this, we

extend the spatial coordinates of each data point by appending time-dimensional coordinates. This integration ensures
that the coordinates encapsulate both spatial and temporal information, offering a more comprehensive representation of
the data.

Given the inherent independence of time from spatial dimensions, we introduce a time weight, denoted as 𝑤 to the
model. This weight is crucial in balancing the influence of spatial and temporal information within the probability
distribution. By adjusting 𝑤, we can fine-tune the model to either emphasize the spatial aspects or give more weight
to the temporal dynamics, depending on the specific requirements of the analysis. This flexibility allows for a more
nuanced and accurate representation of phenomena where both space and time play integral roles, such as in the study
of evolving weather patterns.

To illustrate the role of the time weight 𝑤 in our model, suppose that 𝑠 is a binarized probability distribution
generated by a thunderstorm and let this distribution be represented as

𝑠 = {(𝑡1, 𝑥1), ..., (𝑡𝑚, 𝑥𝑚)} (4)

where 𝑚 is the number of thunderstorm points. Here, 𝑥𝑖 , (1 ≤ 𝑖 ≤ 𝑚), are the spatial coordinates of valid
thunderstorm points, and 𝑡𝑖 , (1 ≤ 𝑖 ≤ 𝑚), correspond to time information of these coordinates. Assume the time weight
𝑤 is a non-negative number, constrainted within the range [0, +∞).

Then, the time-weighted probability distribution can be defined as follows,

𝑠𝑤 := {(𝑤 · 𝑡1, 𝑥1), ..., (𝑤 · 𝑡𝑚, 𝑥𝑚)}. (5)

The introduction of the time weight parameter offers the flexibility to adjust the temporal emphasis within the same
model:

(1) when 𝑤 is close to 0, 𝑤 · 𝑡𝑖 (1 ≤ 𝑖 ≤ 𝑚) approaches 0, effectively reducing the cost along the time axis.
Consequently, the Wasserstein distance in this case predominantly reflects spatial similarities.

(2) when 𝑤 goes to infinity, 𝑤 · 𝑡𝑖 (1 ≤ 𝑖 ≤ 𝑚) tends towards infinity, substantially increasing the cost along the time
axis. Thus, in this situation, the Wasserstein distance becomes more reflective of temporal similarities.

We illustrate the impacts of different weights in the following Fig 3.

D. Filter Functions
In addition to including the temporal coordinates, our approach also focuses on integrating vital airport infrastructures

and flight trajectories with thunderstorm data points. This integration is facilitated through the application of filter
function techniques. The essence of this method is to employ a kernel function or a weight function, tailored to assign
varying weights to different points based on their significance.

To illustrate this, consider a filter function designed such that locations near airport infrastructures or flight trajectories
are assigned higher positive values. This is because these areas are of greater importance due to their operational
significance. Conversely, areas farther from these critical points receive lower positive values, reflecting their relative
lack of immediate impact on key infrastructures or flight paths.

This filter function thus enables the creation of a customized probability distribution. This is achieved through a
coordinate-wise multiplication of the original probability distribution and the filter function. For example:

Suppose that 𝑠 is a discrete probability distribution generated by a thunderstorm and let 𝑓 denote the filter function,
defined as:

𝑓 : R2 → R, (6)
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(a) A small time weight makes Wasserstein distance reflect the spatial
similarity.

(b) A large time weight makes Wasserstein distance reflect the temporal
similarity.

Fig. 3 The change of time weight will lead to different temporal and spatial combinations. The orange line
segments show the distances between the best-matched pixels. The time of source and target distribution are
02:50-03/06/2014 and 20:00-04/03/2014, respectively.

𝑠 = {(𝑡1, 𝑥1), ..., (𝑡𝑚, 𝑥𝑚)}, (7)

where 𝑚 is the number of thunderstorm points. The customized probability distribution 𝑠 𝑓 , is defined as follows:

𝑠 𝑓 = { 𝑓 (𝑥1) · (𝑡1, 𝑥1), ..., 𝑓 (𝑥𝑚) · (𝑡1, 𝑥𝑚)}. (8)

As demonstrated in Figure 4, the result of the coordinate-wise multiplication using the filter function is visually
apparent. In this figure, the thunderstorm pixels of Figure 4 (a) in the cross area of Figure 4 (b), which represent regions
of high importance such as near airport infrastructures or flight paths, retain their brightness in Figure 4 (c). Conversely,
pixels in less critical areas become darker. This change in brightness across different regions aligns with the intended
effect of the filter functions, emphasizing the significance of certain areas over others in the context of our analysis.
This visual representation effectively illustrates how the filter function prioritizes certain regions within the probability
distribution, in accordance with their operational importance.

E. Complexity of Computation
In the practical implementation of the optimal transport problem, particularly for computing the Wasserstein distance

for discrete distributions, several methodologies are commonly employed. These include linear programming methods
like the simplex method [15], as well as entropy regularization-based convex optimization techniques, such as Sinkhorn’s
algorithm [18, 19]. For our purposes, we utilize Sinkhorn’s algorithm, renowned for its polynomial complexity and
effectiveness as an inner-point method.

Sinkhorn’s algorithm, in particular, offers advantages in terms of computational efficiency. It can be further optimized
through approximation algorithms and parallel computing approaches, thereby reducing the overall computational
complexity [15]. This makes it an ideal choice for handling large datasets and complex probability distributions.

The following framework shows how to identify similar thunderstorms in a historical thunderstorm dataset.

F. Clustering Thunderstorms with the OPTICS Algorithm
While probability distributions defined with the Wasserstein distance can be regarded as a metric space, they cannot

be extended to a vector space due to the lack of associativity inherent in probability distributions. This characteristic
precludes the use of popular vector space-based clustering algorithms like K-means or Gaussian Mixture Models (GMM)
for clustering these distributions. However, with the availability of a Wasserstein distance matrix, we can effectively
utilize distance-based clustering algorithms, such as OPTICS (Ordering Points To Identify the Clustering Structure)
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(a) A filter function. (b) A real weather radar image. (c) The coordinate-wisely product of the filter
function and the real weather radar image.

Fig. 4 A filter function, and a real weather radar image and their product. The filter function, when applied
to the radar image, modulates the intensity of each pixel based on its location and relevance. Areas deemed
of greater importance in the context of the study—such as regions near critical infrastructures or key flight
paths—are highlighted by lighter pixels, reflecting higher values from the filter function. Conversely, areas of
lesser significance are rendered as darker pixels, indicating lower values.

Algorithm 1: Algorithm for Identifying the Most Similar Thunderstorm based on the Wasserstein Distance.
Input: A given discrete probability distribution, 𝑠0, and a dataset 𝑆 = {𝑠𝑖}(1 ≤ 𝑖 ≤ |𝑆 |), a filter function 𝑓 and

a time weight 𝑤0 based on airline operation consideration.
Output: An index of the most similar thunderstorm.
Based on the filter function 𝑓 and time weight 𝑤0, generate the weighted probability distribution 𝑠

𝑔

0 and a set of
probability distributions {𝑠𝑔

𝑖
}(1 ≤ 𝑖 ≤ |𝑆 |).

Initialize 𝑑𝑚𝑖𝑛 to a large positive number and 𝑖𝑑𝑥 to 0.
for 𝑖 ← 1 to |𝑆 | do

Compute the Wasserstein distance 𝑑𝑖 = 𝑊 (𝑠𝑔
𝑖
, 𝑠

𝑔

0 )
if 𝑑𝑖 ≤ 𝑑𝑚𝑖𝑛 then

Update the minimum distance 𝑑𝑚𝑖𝑛 = 𝑑𝑖
Update the index of the most similar thunderstorm 𝑖𝑑𝑥 = 𝑖

end
end
return 𝑖𝑑𝑥

[11]. A key advantage of OPTICS is its proficiency in identifying clusters of varying densities in real-world datasets, a
task often challenging for many algorithms. Additionally, OPTICS demonstrates a lower sensitivity to input parameters
compared to algorithms like DBSCAN.

The core methodology of OPTICS involves constructing a minimum spanning tree based on the Wasserstein distances
between points. From this tree, a reachability plot is derived. The algorithm begins by selecting an arbitrary point as
the starting point and then identifying its neighborhood points based on their Wasserstein distances. For each of these
points, OPTICS calculates the core distance and the reachability distance. The algorithm then processes the point with
the smallest reachability distance, subsequently updating the reachability distances of its neighbors. This procedure
continues iteratively until all points in the dataset are processed.

In the resulting reachability plot, clusters manifest as valleys, marked by low reachability distances between
neighboring points within the same cluster. The clear visibility of these valleys in the plot facilitates a more
straightforward determination of the number of clusters, making OPTICS particularly effective for datasets where cluster
densities vary significantly.
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IV. Comparison with Fractions Skill Score (FSS)
One significant advantage of our proposed method, when contrasted with the traditional FSS [14] methods that rely

on discretization in grids, is its reliance solely on the distances between points, eliminating the need for discretization.
This characteristic becomes particularly advantageous when dealing with large ambient spaces, as our method tends to
be more efficient than FSS methods under such circumstances.

Furthermore, unlike FSS methods, our approach offers an additional benefit: it provides explicit transportation plans
for the points. This aspect is not just a theoretical advantage but has practical implications in terms of understanding and
managing the spatial dynamics of the elements being studied. It allows for a more nuanced and operationally relevant
interpretation of data, particularly in applications where the movement or transition of points is of interest.

It is also important to recognize that these are fundamentally different approaches. To illustrate the distinction,
consider the following counterexample involving three thunderstorm snapshots, {𝑇1, 𝑇2, 𝑇3}, each containing a single
point located at different positions (0, 0), (10, 0), (20, 0), respectively, and all with the same mass. Assume the length
of the neighborhood is ℎ.

In the scenario where ℎ ≤ 5, for the FSS case, we have, 𝐹𝑆𝑆(𝑇1, 𝑇2) = 𝐹𝑆𝑆(𝑇1, 𝑇3) =
√

2, which indicates 𝑇2 and 𝑇3
have the same level of similarity with respect to 𝑇1.

n contrast, using the optimal transport method with the Wasserstein distance, we obtain 𝑊2 (𝑇1, 𝑇2) = 10 and
𝑊2 (𝑇1, 𝑇3) = 20. This indicates 𝑇2 is more similar than 𝑇3 with respect to 𝑇1.

This example demonstrates that while the FSS method is more reflective of the local neighbor’s distribution, the
optimal transport method provides insights into both local and global aspects. This distinction highlights the broader
applicability and nuanced perspective offered by the optimal transport method in analyzing thunderstorm data.

V. Experimental Results
To validate our proposed method, we focused on a rectangular area extending 150 km from Dallas Fort Worth

International Airport (DFW). Our thunderstorm image dataset was constructed using data from the High-Resolution
Rapid Refresh (HRRR) database [20]. The HRRR is a high-fidelity, real-time atmospheric model that operates with a
3-km resolution with radar data assimilated every 15 minutes. This model has been consistently producing weather
forecasts since 2014, offering a comprehensive and long-term dataset.

HRRR produces a variety of feature data. For our study, we selected the subhourly fields from the 2D surface level
data as our primary source. Using this data, we calculated the ratio of Vertically Integrated Liquid (VIL) to echo top on
a pixel-wise basis, thereby generating a VIL density image for each timestamp.

Given that thunderstorms in the DFW area predominantly occur between March and October, our data collection
was restricted to this timeframe. As a result, the dataset encompasses 196,992 snapshots, providing a rich and detailed
basis for our analysis and the validation of our method.

A. Thunderstorm Snapshots Comparison
If the objective is to identify thunderstorms based solely on spatial similarity, our analysis can be confined to

comparing individual snapshots. Utilizing this approach, we have identified snapshots from our dataset that are similar
to a given source thunderstorm. These similar snapshots are depicted in Figure 5.

In Figure 5, subfigure (a) showcases the source thunderstorm, captured at 01:30 on 05/03/2022. Subfigures (b) and
(c) represent thunderstorms that are similar to the source, captured at 06:15 on 06/12/2021 and 15:45 on 08/30/2019,
respectively. The similarity of these thunderstorms is determined based on the 𝑊2 (Wasserstein) distance, emphasizing
their spatial characteristics. This comparative visualization underscores the effectiveness of our method in identifying
spatially similar thunderstorms from a historical dataset.

B. Thunderstorm Sequences Comparison
If the user wants to seek both spatial and temporal similarity, then we will set 𝑤 properly, and compare distributions

of the sequence of snapshots. Assume the given thunderstorm evolves as indicated in Fig 6.
With setting time weight 𝑤 = 0.1, we can find a similar thunderstorm as Fig 7. Notice that some snapshots in the

sequence are not quite similar to each other, but the overall sequence and the timeline are similar to each other.
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(a) (b) (c)

Fig. 5 Similar thunderstorm scenarios based on 𝑊2 distance. Subfigure (a) is the source thunderstorm at
01:30-05/03/2022, and subfigures (b) and (c) are similar thunderstorms at 06:15-06/12/2021 and 15:45-08/30/2019.

(a) 20:15 (b) 20:45 (c) 21:15

Fig. 6 Snapshots of the source thunderstorm sequence with time, which happened on 10/10/2021.

(a) 21:15 (b) 21:45 (c) 22:15

Fig. 7 Snapshots of a similar thunderstorm with time, computed by 𝑊2, which happened on 04/26/2016.

C. Filtered Snapshots Comparison
We evaluate the efficacy of filter functions in the context of comparing thunderstorm snapshots for Dallas Fort

Worth Airport (DFW). We identify key geographical locations for this analysis: the coordinates of four corner gates —
Bowie (N33°32.15’, W97°49.28’), Bonham (N33°32.25’, W96°14.05’), Cedar Creek (N32°11.14’, W96°13.09’), Glen
Rose (N32°09.58’ W97°52.66’) — along with the center of the airport (N32°53.40’, W97°02.40’). These locations are
selected due to their strategic importance in the DFW airspace. We only consider the spatial coordinates for simplicity.

To construct the filter functions, we utilize a summation of five Gaussian partial density functions. The centers
of these Gaussian functions correspond to the coordinates of the aforementioned important locations. We choose a
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standard deviation (𝜎) of 10 km to define the effective regions around these points, ensuring that the filter functions are
concentrated around these areas of interest.

The resultant filter function is illustrated in Figure 8. This visualization provides insight into how the filter functions
emphasize the selected key locations, with Gaussian peaks centered around each. The application of these filter functions
in our analysis allows for a targeted examination of thunderstorm activity in relation to these critical areas within the
DFW airport.

(a) The constructed filter function. (b) A source thunderstorm snapshot. (c) A filtered thunderstorm snapshot.

Fig. 8 The filter function at DFW and filtered image. The time is at 08:00-03/21/2022.

We retrieve the filtered snapshot in the dataset, compared with the source filtered image. These similar snapshots
are depicted in Figure 9. The similarity of these thunderstorms is determined by their filter snapshots based on the 𝑊2
(Wasserstein) distance, emphasizing the key geolocations. This comparative visualization underscores the effectiveness
of our method in identifying spatially similar thunderstorms from a historical dataset that are operationally relevant.

(a) (b) (c)

Fig. 9 Similar filtered images based on 𝑊2 distance. Subfigures (a), (b) and (c) are similar thunderstorms at
16:20-03/30/2016, 17:30-03/24/2017 and 12:50-03/28/2018.

D. Clustering Results for Thunderstorm Sequences
In our study, we extended our analysis beyond examining pairwise similarities by employing the OPTICS algorithm

[11] to cluster thunderstorm snapshots within our dataset. Specifically, we selected 1,000 thunderstorm samples with
number of thunderstorm points being between 100 and 500, at random from the entire dataset for our clustering analysis.
This subset of 1,000 samples provides a manageable yet sufficiently diverse representation of the overall dataset, allowing
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us to effectively apply the OPTICS algorithm.
For the OPTICS clustering, we set the epsilon distance to 100. The results of this clustering process are presented in

Figure 10. The analysis revealed two clusters within these samples, highlighted in green and yellow in the reachability
plot. These clusters indicate groupings of thunderstorms with similar characteristics.To further illustrate these findings,
Figure 11 showcases two snapshots that correspond to the lowest points, or “bottoms”, of these valleys in the reachability
plot. These snapshots represent the most central or typical examples of the thunderstorms within each identified cluster.

(a) 20:45

Fig. 10 Reachability plot from the OPTICS algorithm showing clustering of thunderstorm snapshots.

Figure 11 presents two distinct clusters of thunderstorm images, identified using the OPTICS algorithm. These
clusters are visually differentiated by color for clearer distinction. As is shown, the green and yellow are two main
clusters and the rest of them only have few points, therefore, we only focus on the green and yellow clusters. Subfigures
(a), (b), and (c) represent the first cluster, which is highlighted in green color, indicating one group of thunderstorm
patterns. Subfigures (d), (e), and (f) depict the second cluster, marked in yellow color. This color differentiation
aids in visually distinguishing between the two sets of thunderstorm patterns, each representing a unique grouping as
determined by the OPTICS clustering algorithm.

VI. Conclusions
In this paper, we introduce a novel method for identifying similar thunderstorm snapshots and sequences, leveraging

the principles of optimal transport theory. The core of our approach is leveraging the Wasserstein distance to measure
the similarity between thunderstorm probability distributions, represented by the thunderstorm intensity data points. We
present two innovative techniques—incorporation of temporal information into coordinates and the application of filter
functions—to tailor the probability distributions according to specific requirements in airline decision making.

Furthermore, we discuss the computational complexity of our proposed method and delineate its distinctions from
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(a) (b) (c)

(d) (e) (f)

Fig. 11 Figure presents two distinct clusters of thunderstorm images, identified using the OPTICS algorithm.
These clusters are visually differentiated by color for clearer distinction. Subfigures (a), (b), and (c) represent
the first cluster, which is highlighted in green color, indicating one group of thunderstorm patterns. Subfigures
(d), (e), and (f) depict the second cluster, marked in yellow color. This color differentiation aids in visually
distinguishing between the two sets of thunderstorm patterns, each representing a unique grouping as determined
by the OPTICS clustering algorithm.

traditional Fractions Skill Score (FSS) methods. Additionally, we explore the application of clustering algorithms within
the probability distribution space of thunderstorms. This approach aids in identifying common thunderstorm categories
within a particular airspace.

The effectiveness of our method is demonstrated through practical application to real-world weather data in the
Dallas Fort Worth airspace region. The results showcase our method’s capability in providing insightful analysis and
understanding of thunderstorm patterns, thereby contributing valuable tools for meteorological research and practical
applications in airline operations.
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