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Integrated Conflict Management for UAM with
Strategic Demand Capacity Balancing and

Learning-based Tactical Deconfliction
Shulu Chen, Antony Evans, Marc Brittain and Peng Wei

Abstract—Urban air mobility (UAM) has the potential to
revolutionize our daily transportation, offering rapid and efficient
deliveries of passengers and cargo between dedicated locations
within and around the urban environment. Before the commer-
cialization and adoption of this emerging transportation mode,
however, aviation safety must be guaranteed, i.e., all the aircraft
have to be safely separated by strategic and tactical deconfliction.
Reinforcement learning has demonstrated effectiveness in the
tactical deconfliction of en route commercial air traffic in simu-
lation. However, its performance is found to be dependent on the
traffic density. In this project, we propose a novel framework that
combines demand capacity balancing (DCB) for strategic conflict
management and reinforcement learning for tactical separation.
By using DCB to precondition traffic to proper density levels,
we show that reinforcement learning can achieve much better
performance for tactical safety separation. Our results also
indicate that this DCB preconditioning can allow target levels
of safety to be met that are otherwise impossible. In addition,
combining strategic DCB with reinforcement learning for tactical
separation can meet these safety levels while achieving greater
operational efficiency than alternative solutions.

Index Terms—Safety, Separation Assurance, Demand Capacity
Balancing, Multi-agent Reinforcement Learning

I. INTRODUCTION

A. Motivation

According to projections, the number of air vehicles operat-
ing in urban areas will experience a significant increase in the
next two decades [1]–[3]. One major part of this forecasted
traffic surge is from electric vertical take-off and landing
(eVTOL) cargo and passenger air taxis in Urban Air Mobility
(UAM) operations. The current Air Traffic Control (ATC)
system is heavily human-based, which is not expected to
support the emerging high-density urban air traffic operations
[4]. Automation tools and autonomous agents to manage the
urban airspace and UAM traffic are required. Autonomous
ATC was proposed in 2005 with the introduction of the NASA
Advanced Airspace Concept (AAC) [5]. This rule-based au-
tonomous ATC tool was further developed and validated over
the following 10 years to augment human ATC, increase traffic
capacity and enhance operation safety [6], [7].
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Specifically for UAM, the US Federal Aviation Adminis-
tration (FAA) and National Aeronautics and Space Admin-
istration (NASA) proposed concepts for Unmanned Aircraft
System (UAS) Traffic Management (UTM) in recent years
[8]–[11]. From these proposals, one of the most challenging
requirements for an autonomous ATC system is to mitigate
conflicts in high-density traffic flows. This can be achieved
through a combination of strategic conflict management, which
is used to resolve predicted conflicts prior to departure by
adding a ground delay or rescheduling another flight route,
and tactical deconfliction, which focuses on real-time decision
making for airborne aircraft separation through maneuver
advisories like speed or heading changes.

Various autonomous conflict management systems have
been developed, but one persistent challenge in the integration
of such systems is to ensure the advisories are coordinated to
achieve the desired safety level. If this is not the case, the
strategic and tactical deconfliction methods may affect each
other’s results and introduce new risks. To address this issue,
we propose an integrated conflict management framework
(ICMF) that combines both strategic conflict management and
tactical deconfliction. By implementing this comprehensive
autonomous system in air traffic management (ATM) for
UAM, we seek to guarantee safety levels within target values,
while also optimizing traffic efficiency.

B. Related Work

Strategic conflict management involves strategic decisions
like ground delays made by air traffic managers to balance
traffic demand with airspace capacity at bottlenecks, e.g.
airport runways, merging points, and air route intersections.
For traditional ATM, such an approach has been designed
effectively and has shown measurable improvements for air-
lines in the National Airspace System (NAS). For example,
Traffic Management Initiatives (TMI) such as the Ground
Delay Program (GDP), Airspace Flow Program (AFP), and
the Collaborative Trajectory Options Program (CTOP) are
tools used by air traffic flow managers to balance demand
with capacity in congested regions [12]. These programs
have resulted in reduced delays and cancellations for airlines
operating in the NAS, while also improving safety levels by
reducing the number of aircraft in the airspace and preventing
potential conflicts. However, strategic conflict management for
UAM is still a challenge because of the high-density traffic
and high-population areas over which that traffic operates
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[13]. Therefore, further research is required to study and
analyze the effectiveness of strategic conflict management in
the UAM setting, specifically with the integration of tactical
deconfliction technologies.

The field of aircraft separation assurance has seen the
introduction of many advanced methods, as highlighted by
recent studies [14]. One such approach involves using Markov
Decision Processes (MDP) to formulate the separation assur-
ance problem by incorporating a probabilistic model that can
handle uncertainties encountered during flight [15]. Offline
MDP-based methods are useful for strategic deconfliction,
while online MDP-based methods are more suitable for tactical
deconfliction [16]–[18]. However, offline methods can become
intractable if uncertainty occurs en route since the policy
is designed ahead of time, and it is challenging for online
methods to solve the problem efficiently [19]. To address
these challenges, researchers have turned to deep reinforce-
ment learning (DRL) for separation assurance problems [19]–
[23]. For instance, the deep distributed multi-agent variable
(D2MAV-A) framework incorporates an attention network and
employs a modified Proximal Policy Optimization (PPO) algo-
rithm to solve complex sequential decision-making problems
with a variable number of agents [22]. Nevertheless, a key
concern with DRL is its generalization ability - if the density
of traffic flow exceeds the training environment, the DRL
agent may provide erroneous advisories and lead to an aircraft
conflict, or even a near mid-air collision. Thus, preconditioning
air traffic to proper density levels using strategic conflict
management is essential for DRL to ensure safe separation.

C. Contributions and Structure

The major contributions of this paper are summarized as
follows:

1) An integrated conflict management framework for
UAM. This new framework is a coordination between
strategic conflict management and tactical deconfliction.
Through our analysis, we demonstrate that by utilizing
strategic conflict management methods, we can ensure a
reliable foundation for effective tactical deconfliction for
UAM. These complementary approaches work together
to enhance the safety and efficiency of the UAM system.

2) Game theory to improve MARL convergence rate.
This paper focuses on analyzing the potential safety
threats posed by multiple aircraft operating in close
proximity, such as when two aircraft merge together.
Specifically, we investigate the instability and conver-
gence issues that arise when training a multi-agent
reinforcement learning (MARL) model. Through our
analysis, we identify the reasons behind the model’s in-
stability and introduce a new policy to mitigate this issue
using game theory. Our numerical results demonstrate
a significant improvement over the previous model,
highlighting the effectiveness of our proposed approach.

3) A open-source UAM conflict mitigation sandbox.1
We have made the code base of our integrated conflict

1Code is available at https://github.com/Shulu-Chen/bluesky-DCB.git

management simulation, which utilizes the BlueSky
simulator, publicly available. Our code includes baseline
methods and evaluation metrics, enabling users to easily
assess the performance of their own strategic and tactical
algorithms by replacing the existing ones. This open
framework allows for continued development and testing
of conflict management approaches in the context of
UAM, ultimately improving the safety and efficiency of
the system.

4) Revealing essential insights into the interactions be-
tween strategic conflict management and tactical de-
confliction. In this paper, we demonstrate that strategic
conflict management methods, such as departure sep-
aration and DCB, can effectively precondition tactical
deconfliction and maintain safety metrics at nearly con-
stant levels. In addition, tactical deconfliction methods
improve traffic efficiency by permitting higher capacity
near bottlenecks. However, the maneuvers employed by
tactical deconfliction also result in demand uncertainty
at each capacity constrained resource, which diminishes
the effectiveness of DCB.

In Section II, the problem formulation and system frame-
work are described. In Section III, we described the strategic
conflict management methods, including departure separation
and three different approaches for DCB. In Section IV, the
multi-agent reinforcement learning separation method and a
baseline method for tactical deconfliction are described. In
Section V, five numerical experiments are described to demon-
strate the effectiveness and interactions between strategic and
tactical methods. Finally, we present conclusions in Section
VI.

II. PROBLEM FORMULATION

This paper aims to develop a system that ensures aviation
safety metrics remain below target levels while optimizing
traffic efficiency. To achieve this objective, we introduce an
integrated conflict management platform (ICMP) for UAM,
which integrates strategic and tactical separation methods
to mitigate conflicts. As previously demonstrated in [13],
a combination of strategic conflict management and tactical
deconfliction is an effective approach for balancing safety and
efficiency.

A. Framework for Integrated Conflict Management Platform

Figure 1 illustrates the ICMP framework, which divides the
flight operation into two stages: pre-departure and airborne.
The pre-departure stage utilizes strategic conflict management
to determine an appropriate departure time by introducing
ground delays. This paper presents one departure separation
method and two demand capacity balancing algorithms to suit
different scenarios, as outlined in Section III. The airborne
stage employs tactical deconfliction methods to provide speed
advisories for all aircraft to resolve conflicts. This includes a
MARL-based separation assurance method and a rule-based
separation algorithm, the latter representing a benchmark
against which the performance of the other methods can be
compared. These tactical deconfliction methods are described
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Fig. 1: The framework of integrated conflict management platform. In the sub-figure depicting the neural network, both sot and
hot symbolize the original state information for the ownship and intruders, respectively. Meanwhile, set and het represent the
encoded information derived after processing through the attention layer.

in Section IV. Additionally, strategic conflict management
generates simulated flight plans for the MARL offline model
training process, which is then used for online operations.

B. Safety Metrics

In this paper, four safety metrics are measured:
1) Number of Loss of Well Clear (LoWC) events per

flight hour. A LoWC event is defined as a loss of
horizontal separation between any aircraft, and the range
is set as 500 meters in this paper under the recommen-
dation of [24].

2) Number of Near Mid Air Collisions (NMAC) per
flight hour. Since Mid Air Collisions (MACs) between
aircraft are rare, a Near Mid Air Collision (NMAC)
is defined which represents a precursor to a Mid Air
Collision. For crewed aviation, an NMAC is typically
defined as a loss of 500 feet (152 meters) of horizontal
separation and 100 feet (30 meters) of vertical separation
[25]. Since we simulate operations flying at a co-altitude,
we define an NMAC as a loss of 150 meters of horizontal
separation, as described in Table I.

3) Estimated Number of Mid Air Collisions (MAC) per
flight hour. We define a Mid Air Collision as a loss of
horizontal separation of 10 meters, which is representa-
tive of the wingspan or maximum horizontal dimension
of a UAM aircraft. However, since actual MACs are in-
frequent, especially with advanced conflict management,
we instead observe the number of NMACs, and use a
conditional probability, P(MAC|NMAC), to estimate the
probability of MAC. It’s worth noting that this paper
does not model the effect of collision avoidance sys-
tems such as the Airborne Collision Avoidance System

TABLE I: parameters for estimated MACs

Parameter Value

MAC horizontal separation threshold 10m

NMAC horizontal separation threshold 150m

Number of simulation runs (unmitigated) 200

Total testing flight hours (unmitigated) 1000

ACAS X risk ratio β* 0.005

P(MAC|NMAC) 5.038× 10−3

* In this paper, we choose β as 0.005, which is
calculated from [26] table 5, where the P (NMAC)
without ACAS X = 3.01×10−3 and P (NMAC) with
ACAS X vertical and speed advisories = 1.50×10−5.

X (ACAS X), which provides vertical and horizontal
maneuvers to avoid mid-air collisions [27], [28]. Instead,
we utilize a P(MAC) risk ratio β to compensate for the
impact of airborne collision avoidance on the likelihood
of a mid-air collision.
The ACAS X risk ratio β is defined as:

β =
P(NMAC, with ACAS X)

P(NMAC, without ACAS X)
(1)

We estimate the number of MAC events NMAC by:

E(NMAC) = P(MAC|NMAC) · β · NNMAC (2)

where NNMAC is the number of NMACs observed in
the simulation without the implementation of ACAS X.
The P(MAC|NMAC) is obtained by using Monte Carlo
simulation on a scenario without any intervention. Table
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I presents each of the parameter values used in the
estimation of the number of MAC events.

4) Risk Ratio The risk ratio is calculated as the ratio of
the number of estimated MACs for the non-intervention
scenario and the number of estimated MACs for the
other methods applying conflict management.

C. Efficiency Metrics

We calculate three different efficiency metrics:
1) Ground delay due to strategic conflict management.

If departure demand is sufficiently high that demand
exceeds capacity for any constrained resources, DCB
will calculate a new departure time for the aircraft
that will prevent the demand from exceeding capacity.
Ground delay is calculated as:

ground delay = max{0, (Rf − Sf )} (3)

where Rf is the required departure time of flight f and
Sf is the original scheduled departure time.

2) Airborne delay due to tactical deconfliction. For each
aircraft, we estimate total flying time Tf based on the
distance and the aircraft cruise speed. During simulation,
we implement tactical deconfliction and measure the
actual flying time Af . Airborne delay is calculated as
follows:

airborne delay = max{0, (Af − Tf )} (4)

3) Number of alerts is the total number of speed-change
advisories requested by the tactical deconfliction meth-
ods. Operators generally seek to minimize the number
of maneuvers in the air, which use increased energy and
increase workload on pilots. Hence, the number of alerts
is applied as an efficiency metric.

III. STRATEGIC CONFLICT MANAGEMENT

DCB is a mechanism that has been identified by the Federal
Aviation Administration (FAA) as potentially being required
to support urban air mobility (UAM) operations as the number
of operations increases [10]. DCB involves defining airspace
capacity and managing demand strategically to prevent de-
mand from exceeding capacity. This can help to balance
efficiency and predictability in UAM operations, particularly
when operational uncertainties are high. By using DCB, it is
possible to manage the demand for constrained resources, such
as airspace network intersection points, in a way that helps to
ensure the smooth and safe operation of UAM vehicles.

Figure 2 shows a schematic diagram of the DCB algorithm.
At each bottleneck (crossing or merge point), the time horizon
is divided into multiple time windows, each with a fixed dura-
tion S. The capacity C of the resource defines the maximum
number of flights that can fly through the resource in the same
time window. The goal of DCB is to strategically control the
throughput at each bottleneck by delaying operations on the
ground.

This paper introduces two DCB algorithms with differ-
ent applications. An optimization-based DCB algorithm is

Fig. 2: Diagram of DCB. For the given bottleneck with a
capacity of 3 operations every time window of 200 seconds,
the aircraft’s estimated arrival time falls within a fully oc-
cupied time window. To ensure the aircraft’s arrival at the
next available time window, the operation is assigned a ground
delay.

centralized and takes the scheduled departure time of all
aircraft as input and calculates the optimal departure time
required to minimize total delay in advance. In contrast, the
heuristic DCB algorithm has no guarantee to minimize total
departure delay but can be used to determine ground delays
required to ensure that demand does not exceed capacity for
unscheduled aircraft in real-time. While optimization-based
DCB works well for scheduled demand, heuristic DCB is
useful for inserting unscheduled demand into the calculated
departure flow. Figure 3 provides an example of how DCB
works across multiple resources.

A. Optimization Based Demand Capacity Balancing

In this problem, we formulated the DCB problem into
a mix-integer programming problem, which can solve for
networks with multiple capacity constrained resources. The
formulation is shown below.

min
ω∈B+,R∈R+

∑
d∈D

∑
f∈Fd

(Rd,f − Sd,f ) (5)

s.t. Rd,f+1 −Rd,f ≥ ∆, ∀d ∈ D, f ∈ Fd (6)

Rd,f ≥ Sd,f , ∀d ∈ D, f ∈ Fd (7)∑
n∈N

ωn,d,f,i = 1, ∀d ∈ D, f ∈ Fd, i ∈ Id (8)

(Rd,f + Td,i −Bn)ωn,d,f,i ≥ 0, (9)

∀d ∈ D, f ∈ Fd, i ∈ Id, n ∈ N
(Rd,f + Td,i −Bn)ωn,d,f,i ≤W, (10)

∀d ∈ D, f ∈ Fd, i ∈ Id, n ∈ N∑
d∈D

∑
f∈Fd

∑
i∈Id,i=p

ωn,d,f,i ≤ Cp, (11)

∀n ∈ N , p ∈ P

In this formulation, two decision variables are introduced:
the time window identifier ω, and the required time of de-
parture R. The objective (equation (5)) of the problem is to
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Fig. 3: Example of how DCB can be applied across multiple resources. The blue bars show the original demand across different
time windows, and the orange bars show the optimized traffic demand, while the dark orange part is the overlap between blue
and orange bars. The blue and orange dots are the exact departure times of the modeled operations. (a) Traffic demand on
resource 1. (b) Traffic demand on resource 2.

minimize the ground delay of all aircraft f ∈ Fd on all routes
d ∈ D. Here, Rs,d is the required time of departure, and Sd,f

is the original scheduled departure time.
Constraint (6) ensures that any two aircraft departing from

the same vertiport have a minimum separation of ∆. Constraint
(7) ensures that the required departure time is not earlier than
the scheduled time. Constraints (8)-(10) are used to identify
the time window to which the estimated arrival time belongs.
Here, ωn,d,f,i = 1 means that aircraft f departing from d will
arrive at resource i during time window n. Rd,f + Td,i −Bn

is the relative arrival time compared to time window n, where
Td,i is the estimated flying time from d to i, Bn is the start time
of time window n, and W is the length of the time window (set
to 200 seconds in this paper). The identifier is activated as 1
only when the relative arrival time is within the interval [0,W ],
and it can only be activated once. Finally, constraint (11)
ensures that the number of aircraft at each resource p ∈ P does
not exceed the capacity Cp of the resource. It is worth noting
that resource set Id includes only the resources involved in
the route starting from d, while resource set P includes all the
actual capacity constrained resources in the airspace.

B. Heuristic Demand Capacity Balancing

A single resource heuristic DCB algorithm is proposed in
[13].

In our paper, we improved the algorithm to support net-
works with multiple resources. When the system receives new
demand for the resource, it first checks the departure time
of the leading aircraft. If the departure separation is within
the required separation ∆, the system then uses a mapping
function to check the remaining volume of the corresponding
window. If the demand in the window reaches any of the
involved resource capacities Ci, the following departure will
be prevented from departing until the next window that is
under the capacity limit appears. This algorithm is detailed
in Algorithm 1.

Algorithm 1 Heuristic Demand Capacity Balancing

Collect initial DCB window list ω
Initialize start time t
while t < T :

BlueSky.step()
t+ = SIMDT
if received departure request from aircraft f at route r:

check departure time of ahead aircraft Rr,f−1

if (Rr,f −Rr,f−1) ≥ ∆:
if ω.map(t+Di) < Ci for all bottlenecks:

Release aircraft f
ω.map(t+Di)+ = 1

IV. TACTICAL DECONFLICTION

As introduced in [13], strategic deconfliction can mitigate
conflicts and guarantee safe separation but at a significant cost
to efficiency. To enhance safety and efficiency under uncer-
tainty, airborne operations require tactical deconfliction, which
provides maneuver advisories to resolve potential conflicts. In
this paper, we introduce two tactical deconfliction methods,
i.e., a learning-based method, and a rule-based method.

A. MARL Tactical Deconfliction
The multi-agent reinforcement learning (MARL) algorithm

to control individual aircraft in a simulated air traffic environ-
ment is originally introduced in [20] and improved in [22]. By
using MARL, the algorithm can adapt to changing conditions
and learn from past experience, which can help to improve
the performance of the system over time. Additionally, by
training all of the agents using a shared model, all of the
aircraft are following the same separation policy, which can
help to prevent conflicts and maintain a safe and efficient flow
of traffic. Overall, this approach combines the advantages of
MARL and shared model training to provide a powerful tool
for aircraft tactical deconfliction.
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The tradeoff between exploration and exploitation is a well-
recognized challenge in reinforcement learning. In our re-
search, we adopt the synchronous variant of the asynchronous
advantage actor-critic (A3C) algorithm, termed advantage
actor-critic (A2C) [29], and integrate the loss function from
proximal policy optimization (PPO) [30]. A2C, a policy-based
approach, employs a unified neural network to estimate both
the policy (actor) and value (critic) functions. By running mul-
tiple agent threads concurrently, A2C broadens the exploration
of the state space. PPO, on the other hand, adeptly navigates
the exploration-exploitation balance by implementing a novel
loss function, ensuring policy updates remain proximal to
the previous iteration. This minimizes the risk of excessively
aggressive adjustments. Such a combined approach provides
a thorough exploration of the action space. Simultaneously,
it empowers the model to hone its strategy, emphasizing
rewarding actions and enhancing the resilience and efficiency
of our proposed framework.

We employed the deep distributed multi-agent variable-A
(D2MAV-A) framework [22] as the foundation for our model
training. The fundamental architecture of the neural network
can be visualized in the sub-figure referenced by Figure 1. An
attention layer is used to allow the arbitrary-length input and
provide a fixed-length output for the later A2C algorithm.

The MARL components omitting the flight subscript f are
listed below:

1) State Space: In reinforcement learning, the state space
refers to the set of all possible states that an agent can en-
counter at a given time. In this particular study, we assume that
the aircraft’s state and dynamics information is fully accessible
to others, like position, speed, and distance to the destination.
Assessing the realism of this assumption is pivotal. Indeed,
this assumption finds alignment with real-world scenarios
where the sharing of information is a mandated requirement.
Notable examples include the use of automatic dependent
surveillance-broadcast (ADS-B) by commercial airlines [31],
and the enforcement of remote identification for drones [32].

Specifically, the state space for each agent is formulated as
follows:

sot = {d(o)goal, v
(o), θ(o), dNMAC} (12)

hot (i) = {d(i)goal, v
(i), θ(i), d(i)o } (13)

where sot represents the state of the ownship, which contains
the distance to the goal d(o)goal, aircraft speed v(o), aircraft
heading θ(o), and the NMAC boundary dNMAC. The state of
the intruder is quite similar to the ownship while replacing the
NMAC boundary with the distance between the ownship and
the intruder d(i)o . All state values are continuous.

2) Action Space: In this study, the action space is defined
as the set of possible actions that an aircraft can take at each
decision-making step. These actions include slowing down,
holding the current speed, or speeding up:

At = [−∆v, 0,+∆v] (14)

Note that the action defined here is the maneuver operation
sent to the simulator, not the exact speed change, so the action

space is discrete, with a chosen ∆v = 5 knots. At each
time step, occurring every 4 seconds, the agent can execute
maneuvers including accelerating by 5 knots, decelerating by
5 knots, or maintaining its current speed. Furthermore, we
applied speed boundaries to the agent, setting the maximum
speed at 70 knots and the minimum speed at 10 knots, based
on the aircraft dynamics. Should the agent reach these speed
limits, any additional actions beyond these boundaries would
be rendered invalid.

3) Reward Function: A reward function in reinforcement
learning can provide a scalar feedback signal to an agent,
indicating the desirability of the state-action pair taken by the
agent in an environment. In this paper, three types of penalties
are considered at each time step:

R(s, t, a) = R(s) +R(t) +R(a) (15)

Since maintaining separation is the primary objective in this
paper, the majority of the reward function during the training
process is allocated to the separation penalty term, denoted as
R(s). The separation penalty is defined as follows:

R(s) =


−1 if d

(i)
o < dNMAC

−α+ δ · d(i)o if dNMAC ≤ d
(i)
o ≤ dLoWC

0 otherwise
(16)

If the distance between the ownship and the intruder is within
the NMAC threshold dNMAC, the agent incurs a penalty of -
1 and is removed from the simulation. If the distance falls
between the NMAC threshold and the LoWC threshold, the
penalty is linearly proportional to the distance.

In this paper, we also take into account energy consumption,
with the goal of optimizing traffic efficiency while maintaining
a target level of safety. To realize this objective, we introduce
a second component to the reward function, represented as
R(t), which serves as a penalty for flying time.

R(t) =

 −1 if t > T

−η otherwise
(17)

Should an aircraft surpass its designated maximum flying
time T without reaching its destination, it receives a penalty
of -1 and is consequently withdrawn from the simulation.
Surpassing the maximum allowable flying time can be equated
to an in-flight loss of power, potentially resulting in a crash or
necessitating an emergency landing—a situation comparable
in consequence to a mid-air collision. Therefore, imposing
the highest penalty in such instances is justified. In other
circumstances, a constant penalty η is administered at each
step and accumulates over time. This mechanism encourages
the agent to prevent scenarios in which all aircraft maintain
minimum speed until the simulation terminates, instead pro-
moting increased speeds to avoid local optima.

In the real world, frequent speed changes can increase pilot
workload (in the case of a piloted aircraft), with associated
safety implications, and can also result in higher energy use.



7

AC2

Check all intruders

AC1AC1

AC2

Check ahead intruders

Fig. 4: Different intruder detection policies.

To mitigate these risks, we introduce the action penalty term
R(a)

R(a) =

 0 if a = 0

−ψ otherwise
(18)

Whenever an aircraft changes its speed, a fixed penalty ψ
is applied and accumulated over time. This penalty is in-
tended to discourage unnecessary speed changes and encour-
age smoother flight paths.

The specific hyperparameters in the reward function for the
finalized use-case are listed in Table II:

TABLE II: reward function hyperparameters

Hyperparameter Value

NMAC threshold dNMAC 150 meters

LoWC threshold dLoWC 500 meters

Max flying time T 1800 seconds

Separation coefficient α 0.1

Separation coefficient δ 0.0002

Flying time coefficient η 0.001

Speed change coefficient ψ 0.0001

B. Implementation of Game Theory

To gain a comprehensive understanding of multi-agent
decision-making problems and enhance the efficacy of tactical
deconfliction methods, it is valuable to analyze the relation-
ships among agents. However, solving a detailed multi-stage
decision-making problem for all the aircraft from start to
end becomes challenging when applying game theory. The
equilibrium is hard to reach because of the computation
complexity and inefficiency. To break down the problem, we
focus on a one-step decision-making scenario between two
merging aircraft, as illustrated in Figure 4.

TABLE III: cost table

Aircraft 2

Speed up Hold Slow down

Aircraft 1

Speed up -1.0, -1.0 -0.5, -0.5 0.0, -0.1

Hold -0.5, -0.5 -1.0, -1.0 -0.5, -0.5

Slow down -0.1, 0.0 -0.5, -0.5 -1.0, -1.0

Drawing on the principles of game theory, we introduce
a ”check ahead” policy. This policy refines the state space
for the MARL model, effectively reducing the likelihood
of ambiguous relationships arising between two proximate
aircraft. The cost matrix of two aircraft on merging trajectories
can be abstracted to that shown in Table III. In this context,
having one agent opt for ”slow down” while another chooses
”speed up” is the only effective strategy to alleviate the
conflict. Conversely, if both agents select the same action,
it can result in a NMAC, which carries a large penalty of
-1.0. Moreover, a lack of speed differentiation might lead to
a LoWC, associated with a slightly lesser penalty of -0.5. It’s
also worth noting that opting to reduce speed introduces a
minor efficiency cost, represented by a penalty of -0.1. In
the previous work’s setting [20], [22], when Aircraft 1 and
Aircraft 2 identify each other as intruders, the case is a general
sum game with two equilibriums ([speed up, slow down],
[slow down, speed up]). This ambiguous relationship leads
to difficult decision-making for both aircraft, resulting in a
lower convergence rate for multi-agent reinforcement learning
(MARL) training. However, if a policy is implemented where
aircraft only check for leading aircraft and make decisions in
order, the case can be changed to a Stackelberg game, with
only one dominant equilibrium ([speed up, slow down]). This
new relationship is simpler, making it easier for agents to
select the correct actions. Figure 5 shows the learning curve
for MARL with different intruder detection policies.

C. Rule-based Tactical Deconfliction

The rule-based tactical deconfliction method relies on pre-
defined rules to determine the actions of aircraft to avoid
NMACs, which is described in Figure 6. The rules are based
on specific thresholds for distances between aircraft, including
the NMAC threshold dNMAC, low separation boundary dls, and
high separation boundary dhs.

In the case where the distance between two aircraft is closer
than the NMAC threshold, the following aircraft will choose to
hover or reduce speed to a minimum level to avoid a potential
collision. This situation is defined as an NMAC event. If the
distance between the following aircraft and the lead aircraft is
lower than the low separation boundary, the following aircraft
will choose to slow down. On the other hand, if the distance
is larger than the high separation boundary, or if there is no
leading aircraft, the following aircraft will choose to speed up.

The rule-based tactical deconfliction method serves as a
benchmark in the study described in [13]. However, it should
be noted that rule-based methods may have limitations in
complex and dynamic environments, and it only provides a
baseline approach for separation assurance but may require
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Fig. 5: The learning curve of MARL with different intruder detection policies. (a) Detect all intruders nearby; (b) Only detect
forward intruders.

Case 2: low separation

𝑑 < 𝑑𝑙𝑠

Slow down

Case 3: high separation

𝑑 > 𝑑ℎ𝑠

Speed up

Case 1: conflict event

Minimum speed
𝑑 < 𝑑𝑁𝑀𝐴𝐶
𝑁𝑀𝐴𝐶 += 1

Fig. 6: Description of rule-based tactical deconfliction. In Case
1, a conflict event is depicted, prompting the trailing aircraft to
immediately decelerate to minimum speed. Case 2 showcases a
low separation scenario, where the trailing aircraft slows down
to increase the separation distance. Case 3 portrays a high
separation scenario, in which the trailing aircraft accelerates
to reduce the separation.

further refinement and improvement for more complex situa-
tions.

V. NUMERICAL EXPERIMENTS

A. Simulation Environment

In this study, we use BlueSky [33] as our simulator to run
a fast-time simulation. BlueSky is a widely acknowledged
and accepted open-source platform in academia for aviation
research. It is capable of running a large number of aircraft
simulations in parallel efficiently. In addition, it is highly

configurable, e.g., allowing the configuration of vertiport lo-
cations, waypoint locations, UAM routes, and aircraft perfor-
mance parameters.

To study and evaluate the performance of the integrated
conflict management system in structured airspace, we develop
an evaluation scenario as shown in Figure 7, which defines
capacity constrained resources as the typical bottlenecks in an
airspace network. Three routes are included in the scenario:

• Route1: N-7 → N-1 → N-2 → N-3
• Route2: N-9 → N-1 → N-2 → N-3
• Route3: M-2 → N-2 → M-4

where N-1 and N-2 are two resources in this network. We
implement the optimization-based DCB on both resources.

The detailed simulation parameters are listed in Table IV:

TABLE IV: simulation parameters

Category Parameter Value

Horizontal speed range [5.14, 36.01] m/s

Aircraft dynamic Vertical speed range [-7.62, 7.62] m/s

Acceleration rate 3.5 m/s2

Route 1 distance 9.0 km

Environment parameter Route 2 distance 9.0 km

Route 3 distance 5.5 km

Route altitude 121.9 m / 400 ft

B. Experimental Results

We conducted several numerical experiments to showcase
the efficacy of our proposed integrated conflict management
framework. Specifically, we first demonstrate the learning
curve of the MARL training process on different capacities,
which is used to determine the proper traffic density to obtain
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Fig. 7: Illustration of the hybrid scenario in the Bluesky
simulator. The blue lines represent three routes, while the
grey triangles with labels indicate the origin point, destination,
and waypoints. Additionally, the green and yellow triangles
represent each aircraft, displaying information such as the
aircraft ID, altitude, and speed.

the best MARL model. Next, we determine the maximum
capacity for the rule-based tactical method and MARL de-
confliction model, as well as the capacity without any tactical
deconfliction as a reference. Once we have the proper capacity
value for DCB, we use those determined parameters and
the trained model to compare the performance of different
algorithm combinations using six metrics. Finally, we analyze
the speed curve of various tactical deconfliction methods to
gain insights into the reasons for differences in performance.

To ensure a fair comparison between the rule-based and
MARL methods, we set the observation range to 1500m for
both methods. The decision-making of the ownship aircraft
would be affected by the intruders who are within this obser-
vation range.

1) Learning Curve for Different Capacities: The ultimate
goal of the MARL model is to reduce penalties and determine
the best policy for a given environment. However, if the traffic
density is too high, or if aircraft do not have sufficient initial
separation, it can be challenging for the MARL model to
search for the optimal policy. In fact, high traffic density may
lead the model to an unexpected local optimal policy, such
as forcing all aircraft to airborne holding to avoid conflicts or
even colliding to avoid further penalty steps. Therefore, it is
essential to have a DCB layer as a precondition for MARL
training.

To train the MARL model, we utilized the flight schedule
tables optimized by DCB as the training scenario. To generate
these tables, we first created a set of original scheduled
departure times Sd,f ,∀f ∈ F d, corresponding to three de-
parture points d ∈ D, independently. The departure intervals
Sd,f+1 − Sd,f on each route follow a beta distribution, with
the average interval λ used to control the traffic demand.
Next, we used DCB with a fixed capacity to compute the

set of required departure times Rd,f ,∀d ∈ D, f ∈ F d,
and compiled them into a flight schedule table. Each table
contains 30 flight plans, which include information such as
required departure time, origin, destination, waypoints, cruise
speed, and cruise altitude. To avoid overfitting, we generated
100 different flight schedule tables and place them into a
scenario pool. During training, the MARL model randomly
selected a flight schedule table at each episode to improve
its generalization performance. An episode is defined as a
simulation round that fully executes the flight schedule table,
starting from the first aircraft departure and ending with the
final aircraft landing.

The training process consisted of a total of 150,000 episodes
and was performed on two Nvidia RTX 3090 graphics cards.
The model updated its weight every 30 episodes, and the
simulation was executed in parallel with the support of the
Ray python package [34]. The entire training process took
roughly 4 hours.

Figure 8 depicts the learning curve on capacities of 6, 8, 10,
and 30 operations per 200 seconds window, the latter of which
corresponds to the case without DCB. The figure indicates
that as the capacity increases, the MARL model faces greater
difficulty in reaching the optimal policy. For instance, for a
capacity of 6 operations per 200 seconds window, the model
converges after 30,000 episodes, while for a capacity of 8
operations per 200s window, it continues searching for up to
120,000 episodes. Furthermore, the figure clearly illustrates
the different components of the reward function described in
Section IV-A. In Figure 8a, LoWC and NMAC events are
infrequent, and the only cost incurred is the step penalty, which
is introduced from the actual flying time and is unavoidable.
In contrast, in Figure 8b and Figure 8c, the occurrence of
NMAC is rare, while LoWC is more significant. Additionally,
the speed change penalty is higher than in Figure 8a since
the agent requires more maneuvers to avoid collisions. Figure
8d shows how MARL attempts to mitigate conflicts with
no preconditioning by DCB. The primary component is the
NMAC penalty, which implies a failure policy.

After careful consideration, we selected the best model
trained with a capacity of 10 operations per 200s window
for the subsequent experiments. This is because we want a
model that will seek to prevent NMACs and this is the highest
capacity that results in very few NMACs. In this paper, we do
not seek to minimize LoWC events. It is noted that a MARL
model trained on a highly constrained scenario generally
performs well on a scenario that is not highly constrained,
but the reverse may not hold.

2) Performance with Different Capacities: After showing
the feasibility of MARL, the next challenge is to determine
the maximum capacity that each tactical deconfliction method
can support, while meeting a Target Level of Safety (TLS).
To address this issue, we employed Monte Carlo simulations
and evaluated system performance across a range of capacities
from 1 to 11 operations per 200s window. Each capacity was
applied for 30 simulation runs and the average value of the
estimated MAC was recorded in each case. In order to observe
the efficacy of DCB on different capacities, the original traffic
demand was set up at a high level, where the average demand
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Fig. 8: MARL learning curve for different capacities. (a) Capacity=6 operations per 200s window. (b) Capacity=8 operations
per 200s window. (c) Capacity=10 operations per 200s window. (d) Without DCB.

interval is 30 seconds on each route. To select the appropriate
capacity, we compared the average estimated MAC against a
TLS of 0.94 MAC per 100,000 flight hours, in accordance with
the United States Department of Transportation’s proposed
TLS for General Aviation aircraft in 2023 [35].

Table V displays the average estimated MACs for different
capacities. As the capacity increases, the estimated MACs
also increase for all three tactical methods, indicating that
DCB can function effectively to precondition for tactical
deconfliction. The table also reveals that, at any capacity level,
the performance of the MARL model is superior to that of
the rule-based approach. Based on the predefined TLS, we
selected a capacity of 4 operations per 200s window for the
system with the rule-based tactical method and a capacity
of 7 operations per 200s window for the system with the
MARL tactical method. This indicates that the MARL method
is able to meet the TLS at a higher demand than the rule-

based method. Furthermore, if the system lacks any tactical
deconfliction method, only a capacity of 1 operation per 200s
window is viable. This is effectively strategic deconfliction
since only 1 operation is released into each time window.

It is noted that the estimated MACs per flight hour for the
rule-based method at a capacity of 4 are below those of the
MARL method. Moreover, for the MARL method, the MACs
per flight hour decrease as the capacity increases from 5 to
7. These deviations from the general trends that inform our
conclusions can be attributed to the inherent variability in the
Monte-Carlo simulation. However, it’s crucial to highlight that
all these values remain within the TLS. We do not consider
these variations to impact the broader observed trends or our
conclusions regarding the MARL method’s performance.

3) Model Comparison: In experiments 1 and 2 we suc-
cessfully trained an effective MARL model for tactical de-
confliction and established the maximum capacities of various
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TABLE V: estimated MACs on different capacities

Estimated MACs per 100,000 flight hours

Traffic demand High

Target level of safety 0.94

Tactical method None Rule-based MARL

1 0.00 0.00 0.00

2 41.55 0.12 0.00

3 56.89 0.68 0.00

4 75.51 0.74 0.85

5 84.32 10.30 0.90

Capacity of DCB 6 61.52 43.06 0.71

7 122.14 115.34 0.66

8 112.65 242.24 3.70

9 145.36 370.52 23.88

10 163.31 623.08 23.49

11 155.52 673.24 32.39

tactical methods for strategic conflict management. In the
experiment described here, we integrated these two compo-
nents and conducted a comprehensive analysis, comparing
different algorithm combinations using the six metrics outlined
in section II. To evaluate the impact of different traffic demand
levels, we tested each method under high, medium, and low
traffic demand levels, corresponding to average departure inter-
vals of 30, 60, and 120 seconds on each route, respectively. To
ensure accuracy and eliminate the effects of randomness, we
ran each experiment setting 30 times and reported the average
values for each metric.

The final results are presented in Table VI. They lead us to
draw several important conclusions.

• DCB is essential for safe separation. By incorporating a
suitable maximum capacity for DCB, we were able to
mitigate conflicts and maintain estimated MACs under
the TLS. The first three rows in Table VI do not apply
DCB. The first represents no tactical deconfliction, the
second the rule-based tactical deconfliction method, and
the third the MARL tactical deconfliction method, all
applied without preconditioning by DCB to reduce the
demand on the tactical systems to levels that would allow
them to meet the TLS. Hence we do not expect the
estimated MAC per 100,000 flight hours to meet the TLS
in these cases. The last three rows correspond to the same
tactical deconfliction methods, but with the DCB applied
to precondition the traffic demand to a level that will
allow the tactical deconfliction method to meet the TLS.
It is evident that DCB plays a crucial role in eliminating
conflicts and ensuring safety.

• DCB can help save energy by reducing fuel consumption
and emissions. When traffic demand is high, DCB can
lower the number of alerts and shorten flying time, which
improves the efficiency metrics. However, to implement
DCB, aircraft are delayed on the ground, with the length

of the delay depending on the traffic demand and maxi-
mum capacity applied. It’s worth noting that ground delay
is not unique to DCB and exists in all three non-DCB
methods as well. This is because the basic departure
separation method used for tactical deconfliction in all
cases also causes some small ground delays.

• Advanced tactical deconfliction methods, such as MARL,
can increase system capacity and increase efficiency
accordingly. MARL combined with DCB has similar
safety metrics to the rule-based method with DCB and
DCB with no tactical deconfliction, and all of these
methods could guarantee safe separation. However, as the
maximum capacity of each resource decreases, ground
delay significantly increases. Thus, MARL is the most
efficient method simulated because it allows for a higher
airspace capacity, which ultimately leads to a decrease in
ground delay.

• The performance of the rule-based tactical deconfliction
method without DCB is worse than the no-intervention
case. When the traffic density is too high, the risk ratio
can be greater than 1, indicating that the rule-based
method can lead to a higher risk of collisions than if no
intervention is made at all (i.e., induce airspace risk). The
rationale behind this assertion is based on the potential for
aircraft to experience blockages en route in the absence
of DCB regulation. In scenarios where DCB is not imple-
mented, aircraft may reach their minimum speed, leaving
them with limited options to avoid collisions. While it is
possible to execute other rule-based tactical maneuvers
to prevent blockages, our paper does not model them for
the sake of simplicity. This observation highlights the
necessity of using DCB in such scenarios, which can
help reduce the risk of collisions and improve overall
efficiency.

4) Speed Curve Analysis: Given the differences observed
between the MARL and rule-based methods for tactical decon-
fliction in the previous experiments, we sought to investigate
the factors contributing to these differences. To do so, we
recorded and plotted the speed curves of the simulated aircraft,
as shown in Figure 9. To facilitate readability, we selected
eight aircraft uniformly from the total of 30 aircraft simulated.

We observed that the rule-based method for tactical de-
confliction resulted in aircraft changing speed dramatically
from maximum to minimum, often with rapid acceleration
and deceleration. In contrast, the MARL tactical deconfliction
method provides speed advisories considering a longer-term
view. For instance, for aircraft D533 (the brown curve in Fig-
ure 9), the MARL method advised holding at a relatively lower
speed range for a period, helping the aircraft avoid slowing
down to the minimum speed recommended by the rule-based
method. This adjustment allowed the aircraft to arrive earlier
than the rule-based method suggested. We also observed speed
oscillations in the rule-based separation method, as illustrated
by aircraft D118 (the orange curve in Figure 9). This occurred
because the aircraft was in a situation where the distance to the
leading aircraft was exactly on the boundary of the threshold
for speed-up and slow-down.

In summary, the MARL tactical deconfliction method pro-
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TABLE VI: numerical results

Traffic demand High Medium Low High Medium Low High Medium Low

Safety metrics LoWCs/ flight hr Estimated MACs/ 100,000 flight hrs Risk ratio

Algorithm

No Intervention 467.0 313.0 162.4 205.53 137.62 76.19 - - -

Rule-based 1263.3 908.5 376.7 908.25 559.46 193.73 4.4195 4.0654 2.5423

MARL 792.4 232.5 127.8 195.51 17.53 30.85 0.9513 0.1274 0.4049

DCB, C=1 0.0 0.0 0.0 0.00 0.00 0.00 0.0000 0.0000 0.0000

Rule-based+DCB, C=4 25.9 34.8 30.8 0.74 0.77 0.92 0.0036 0.0056 0.0120

MARL+DCB, C=7 45.6 62.8 49.6 0.66 0.65 0.51 0.0032 0.0047 0.0068

Efficiency metrics Number of alerts Airborne delay (seconds) Ground delay (seconds)

Algorithm

No Intervention - - - 0.0 0.0 0.0 28.7 9.1 3.5

Rule-based 73.1 66.0 50.2 260.3 191.3 93.6 28.7 9.1 3.5

MARL 25.9 22.8 15.5 71.4 78.3 26.4 28.7 9.1 3.5

DCB, C=1 - - - 0.0 0.0 0.0 2566.1 2580.9 2444.4

Rule-based+DCB, C=4 22.6 32.1 25.6 15.0 23.7 18.7 505.2 406.2 293.0

MARL+DCB, C=7 18.1 19.5 16.5 30.8 32.9 22.2 158.4 74.4 19.9
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Fig. 9: The comparison of speed curves of aircraft with the rule-based tactical method and the MARL methods. The y-axis in
each plot represents the aircraft’s actual speed in knots, while the x-axis is the simulation time in seconds. Each line represents
an aircraft.

vides more optimal speed advisories compared to the rule-
based method, allowing aircraft to arrive earlier and avoid
rapid acceleration and deceleration, which may lead to more
efficient and stable flight operations.

VI. CONCLUSION

Our approach demonstrated promising results in reducing
the number of conflicts and improving the efficiency of
UAM operations at scale. The integrated conflict management
framework, which combines strategic conflict management and
tactical deconfliction methods, offers a comprehensive solution

to address some of the challenges in high-density UAM
operations. Our research showed that the optimization-based
multiple resource demand capacity balancing algorithm plays
a crucial role in preconditioning for tactical deconfliction. The
successful implementation of game theory also improved the
performance of the tactical deconfliction model, saving com-
putational resources and making it possible to apply the system
in the real world. In addition, the Monte-Carlo simulation we
used to study the interactions between the strategic and tactical
safety assurance methods provided valuable insights that can
contribute to the development of more effective and efficient
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UAM systems in the future.
One of the next steps in this research is to thoroughly

investigate and understand the interplay between strategic
and tactical conflict management methods. Currently, strategic
conflict management computes the optimal departure time
based on a deterministic estimated flying time based on known
operations. However, tactical deconfliction within the system
may introduce speed changes that can affect the estimated
time of arrival (ETA) at resources. As airspace networks
become more complex, these time differences can accumulate
and result in reduced effectiveness of the preconditioning by
strategic conflict management systems. Therefore, formulating
the ETA stochastically by considering the method of tactical
deconfliction could increase the system’s robustness in com-
plex networks.
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