
Safe and Scalable Real-Time Trajectory Planning Framework for
Urban Air Mobility∗

Abenezer G. Taye†

George Washington University, Washington, DC, 20052, USA

Roberto Valenti‡
MathWorks, Natick, MA 01760, USA

Akshay Rajhans§

MathWorks, Natick, MA 01760, USA

Anastasia Mavrommati¶
MathWorks, Natick, MA 01760, USA

Pieter J. Mosterman‖

MathWorks, Natick, MA 01760, USA

Peng Wei∗∗

George Washington University, Washington, DC, 20052, USA

This paper presents a real-time trajectory planning framework for Urban Air Mobility

(UAM) that is both safe and scalable. The proposed framework employs a decentralized,

free-flight concept of operation in which each aircraft independently performs separation

assurance and conflict resolution, generating safe trajectories by accounting for the future states

of nearby aircraft. The framework consists of two main components: a data-driven reachability

analysis tool and an efficient Markov Decision Process (MDP) based decision maker. The

reachability analysis over-approximates the reachable set of each aircraft through a discrepancy

function learned online from simulated trajectories. The decision maker, on the other hand, uses

a 6-degrees-of-freedom guidance model of fixed-wing aircraft to ensure collision-free trajectory

planning. Additionally, the proposed framework incorporates reward shaping and action

shielding techniques to enhance safety performance. The proposed framework was evaluated

through simulation experiments involving up to 32 aircraft in a generic city-scale area with a 15

km radius, with performance measured by the number of Near Mid Air Collisions (NMAC) and

computational time. The results demonstrate the planner’s ability to generate safe trajectories
∗This work was presented in part at the AIAA AVIATION 2022 Forum, Taye, A. G., Bertram, J., Fan, C., Wei, P. (2022). "Reachability based

online safety verification for high-density urban air mobility trajectory planning," AIAA Paper 2022-3542, Chicago, IL, June 2022.
†Graduate Student, Department of Mechanical & Aerospace Engineering, abenezertaye@gwu.edu, AIAA Student Member.
‡Research Scientist, MathWorks Advanced Research and Technology Office, rvalenti@mathworks.com
§Research Scientist, MathWorks Advanced Research and Technology Office, arajhans@mathworks.com
¶Research Scientist, MathWorks Advanced Research and Technology Office, amavromm@mathworks.com
‖Research Scientist, MathWorks Advanced Research and Technology Office

∗∗Associate Professor, Department of Mechanical & Aerospace Engineering, pwei@gwu.edu, AIAA Senior Member.

for the aircraft in polynomial time, showing its scalability. Moreover, the action shielding and

reward shaping strategies show up to a 78.71% and 85.14% reduction in NMAC compared to

the baseline planner, respectively.

I. Introduction
Urban Air Mobility (UAM) is a novel concept in which partially or fully autonomous air vehicles transport passengers

and cargo in dense urban environments. This technology aims to provide a safe, efficient, and accessible on-demand air

transportation system [1], offering an alternative to traditional ground-based transportation methods. Furthermore, as

the technology advances, it will connect urban centers to outlying areas, expanding the reach of metropolitan regions.

UAM operation is a multi-agent system, with several aircraft simultaneously operating in a city-scale domain.

This necessitates a UAM trajectory planning framework to generate and manage trajectories for each aircraft in a

computationally efficient manner. Moreover, since UAM is a safety-critical system, safety must be guaranteed at all times

of operation. These two problems — developing a scalable trajectory planner and safety verification of autonomous

systems — are fundamentally challenging in and of themselves and are often addressed independently in the literature.

However, because UAM is a safety-critical multi-agent system, a UAM trajectory planning framework needs to address

safety and scalability in tandem.

The literature on multi-agent trajectory planning algorithms is extensive and can broadly be classified as centralized

and decentralized methods. In centralized methods, the state of each aircraft, obstacles, trajectory constraints, and the

terminal area’s state are observable to the controller via sensors, radar, etc., and a central supervising controller resolves

conflicts between aircraft. The central controller precomputes trajectories for all aircraft before flight, typically by

formulating the problem in an optimal control framework and solving the problem with various methods; examples are:

semidefinite programming [2], nonlinear programming [3, 4], mixed-integer linear programming [5–8], mixed-integer

quadratic programming [9], sequential convex programming [10, 11], second-order cone programming [12], evolutionary

techniques [13–15], and reinforcement learning [16]. One common thread among centralized approaches is that to

pursue a global optimum, they must consider each aircraft and obstacle in space, leading to scalability issues with a

large number of aircraft and obstacles. In addition, as new aircraft enter the scene, centralized algorithms typically need

to recompute part or all of the problem to arrive at a new global optimum.

On the other hand, decentralized methods scale better with the number of aircraft and objects in the system

but typically cannot obtain globally optimal solutions. Furthermore, decentralized methods may be more robust

than centralized approaches [17] because they are not generally prone to a single point of failure. In decentralized

systems, each aircraft resolves conflicts locally, and the underlying method can be considered either cooperative or

non-cooperative. Computational scalability and solution quality or optimality are significant design trade-offs between

centralized and decentralized trajectory planning strategies. In [18], we proposed a Markov Decision Process (MDP)

2

based decentralized UAM trajectory planning algorithm that is highly scalable. The algorithm operates in a free-flight

manner. This study is extended by incorporating an online safety verification module that enables the trajectory planner

to generate safe trajectories.

The task of guaranteeing the safe operation of autonomous systems is often called verification and validation.

Several approaches to verification and validation have been proposed in the literature. These approaches can be broadly

classified as formal methods and sampling-based approaches. Sampling-based approaches involve generating a finite

number of scenarios to assess the performance of a system. Hence, they have the advantage of being easier to implement

and evaluate the performance of an autonomous system. However, they can not account for all possible behaviors of the

system, which is an essential element in verification and validation. As a result, formal methods, which can capture all

possible behaviors of the system, have gained significant research attention in recent years.

From a safety verification standpoint, trajectory planning of autonomous systems has recently been studied in two

main directions: design-then-verify and verify-while-design. Design-then-verify is a commonly used approach where

the task of trajectory planning is performed first; then, the system is evaluated using different verification tools to

determine whether it satisfies the safety requirements [19]. However, this approach is computationally inefficient and

often fails to give the necessary guarantees [20]. On the other hand, the verify-while-design approach, also known as

correct-by-construction, integrates the verification process into the control design in a closed-loop manner [21, 22].

Thus the approach becomes computationally efficient and enables the system to satisfy the safety requirements by its

very nature.

In this study, we adopted the verify-while-design approach to synthesize each aircraft’s trajectory online formally.

An efficient reachability analysis module that explores all possible behaviors of an aircraft has been used to satisfy

the reach-avoid property of the system. Several reachability analysis formulations of a dynamical system have been

proposed in the literature. These methods include Hamilton-Jacobi-based reachability analysis formulations [23],

CORA [24], SpaceEx [25], and Flow∗ [26]. Although these approaches provide formal soundness guarantees, they

are computationally expensive. Hence, they can not be used online in the presence of many aircraft. In this study, to

over-approximate the reachable set of an aircraft, we implemented a sensitivity analysis-based approach from DryVR

[27]. DryVR has been demonstrated to be highly scalable and recently implemented in [28] to generate a safe operation

volume for unmanned aircraft systems (UAS) traffic management. The reachability analysis module, then, is integrated

with our previously developed MDP-based trajectory planner [18] to guide the motion of multiple UAM vehicles

between vertiports.

We presented a preliminary version of this paper at the AIAA Aviation 2022 conference [29]. The main differences

between the AIAA conference paper and this paper are summarized as follows: 1) We have enhanced the performance of

the baseline trajectory planner proposed in the conference paper by replacing some of the important components. These

include adopting an accurate aircraft guidance model, developing a new reward function, and constructing an action

3

space that results in better performance. 2) We have reformulated the trajectory planning framework to incorporate

an action shielding strategy that prevents the aircraft from choosing control actions that could compromise safety,

thereby enhancing the safety properties of the planner presented in the conference paper. 3) To further improve the

safety features of the trajectory planner proposed in the conference paper, we have developed a reward-shaping scheme

and integrated it into the reward function of the MDP formulation. 4) We have developed a new UAM scenario that

enables us to test the collision avoidance capabilities of the system under adverse conditions, wherein each agent in the

environment is required to avoid all other agents.

This paper is organized as follows: In Section I, we review previous works related to the problem at hand. Section II

outlines the problem, and section III presents the mathematical formulation of the two main components, the MDP and

reachability analysis. We also provide an overview of the proposed trajectory planning framework, including the role of

each component in the trajectory planning procedure. In Section IV, we discuss the implemented UAM scenario and

present the results for the nominal trajectory planner (without any safety reinforcement) and the two other approaches

proposed to improve the safety of the trajectory planner, namely, action shielding and reward shaping. Finally, in Section

V, we provide the conclusion of this work.

II. Problem Formulation

A. Problem Description

This study aims to address the problem of developing a UAM trajectory planning framework that is computationally

efficient and guarantees the safe navigation of UAM aircraft. As shown in Figure 1, the two main components of the

proposed framework are the MDP-based trajectory planner and a reachability analysis module, which the trajectory

planner utilizes to gather information about the future states of the aircraft. The approaches we used to formulate the

trajectory planning problem and compute the reachable sets of the aircraft are proven to be highly scalable [18][27].

Adopting such formulations makes the developed UAM trajectory planning framework computationally efficient.

In this paper, we assumed a noise-free sensing scheme in the environment where each aircraft in the system can

access the real-time position information of nearby intruder aircraft. The actual implementation of such a sensing scheme

for UAM operations can be possible using Automatic Dependent Surveillance-Broadcast (ADS-B) as recommended by

the FAA [30]. Regarding the communication scheme, the framework is assumed to be implemented in a distributed

manner with onboard computation and planning. Hence, there is no need for any communication between aircraft since

every aircraft will sense and make its own decision.

B. Aircraft Dynamics

The aircraft model used in this paper is based on a 6-DOF kinematic guidance model formulation provided in [31].

The original guidance model assumes the presence of wind; hence, it contains wind-related parameters. However, since

4

Intruder

Intruder

Vertiport (S𝑔)

Future States
¤𝜁 = 𝑓 (𝜁,A)

Ownship

Reachable Set
R𝑖 (𝜁𝑖 (𝑡), 𝑇)

R𝑖 (𝜁𝑖 (𝑡), 𝑇)
Reachable Set

Fig. 1 Working principle of the proposed trajectory planner.

we are not considering the presence of wind in this study, we used a simplified model given in Equation 1, where ¤𝑥, ¤𝑦, ¤𝑧

are north, east, and down velocities of the aircraft with respect to the inertial reference frame. 𝛾 is the flight-path angle,

and 𝑉 is the speed of the aircraft. 𝜙, 𝜒, and 𝜓 represent the roll, course, and heading angles, respectively. 𝑏𝛾 , 𝑏𝑉 , and

𝑏𝜙 are positive constants that depend on the implementation of the autopilot and the state estimation schemes. The

superscript ∗𝑐 as in 𝛾𝑐, 𝑉𝑐, and 𝜙𝑐 denotes the commanded values given to the autopilot.

¤𝑥 = 𝑉 cos𝜓 cos 𝛾

¤𝑦 = 𝑉 sin𝜓 cos 𝛾

¤𝑧 = 𝑉 sin 𝛾

¤𝜒 =
𝑔

𝑉
tan 𝜙 cos(𝜒 − 𝜓)

¤𝛾 = 𝑏𝛾 (𝛾𝑐 − 𝛾)

¤𝑉 = 𝑏𝑉 (𝑉𝑐 −𝑉)

¤𝜙 = 𝑏𝜙 (𝜙𝑐 − 𝜙)

(1)

III. Methodology

A. Markov Decision Process Formulation

In this paper, we formulate the aircraft trajectory planning problem as a Markov decision process (MDP), where the

state transitions will be governed by the vehicle dynamics described in Section II.B. MDPs are formulated as the tuple

(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑡) where 𝑠𝑡 ∈ S is the state at a given time 𝑡 within the state space S. 𝑎𝑡 ∈ A denotes the action taken by the

5

agent at time 𝑡 from the action set A. 𝑟𝑡 is the reward received by the agent as a result of taking action 𝑎𝑡 from 𝑠𝑡 and

arriving at 𝑠𝑡+1, and T(𝑠𝑡 , 𝑎, 𝑠𝑡+1) is a transition function that describes the dynamics of the environment and capture

the probability 𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) of transitioning to a state 𝑠𝑡+1 given the action 𝑎𝑡 taken from state 𝑠𝑡 .

A policy 𝜋 can map each state 𝑠 ∈ S to action 𝑎 ∈ A. From a given policy 𝜋 ∈ 𝚷, a value function V𝜋 (𝑆) can

be computed that represents the expected return that will be obtained within the environment by following the policy

𝜋. The solution of an MDP is the optimal policy 𝜋∗, which defines the optimal action 𝑎∗ ∈ A that can be taken from

each state 𝑠 ∈ S to maximize the expected return. From this optimal policy 𝜋∗, the optimal value function V∗ (𝑠) can

be computed, which describes the maximum expected value obtained from each state 𝑠 ∈ S. Furthermore, from the

optimal value function V∗ (𝑠), the optimal policy 𝜋∗ can also easily be recovered.

1. State Space

The environment is a continuous state space placed on a spherical volume of 15𝑘𝑚 radius, based on [1]. Given the

dynamics of an aircraft:

¤𝜻 (𝑡) = 𝑓 (𝜻 (𝑡), u(𝑡)), (2)

where, 𝑓 : R𝑛 × R→ R𝑛 is a continuous function. 𝜻 denotes the aircraft states, which includes the 𝑥, 𝑦, 𝑧 positions,

heading angle 𝜓, the flight path angle 𝛾, the course 𝜒, the roll angle 𝜙, and the speed 𝑉 . The trajectory of an aircraft

𝝃 : R𝑛 × R≥0 → R𝑛 is the solution to the differential equation (2). It represents how the state variables of the aircraft

evolve through time. For a given initial set 𝜻0 ∈ R𝑛, the state of the system at time 𝑡 is 𝝃 (𝜻0, 𝑡) = 𝜻 (𝑡). The control

input u(𝑡) is comprised of the thrust 𝑛𝑥 , the rate of change of angle of attack ¤𝛼, and the rate of change of the roll angle

¤𝜙. In addition, a single state in the state space (s𝑜) contains all the states of an aircraft (𝜻) and the states of every other

aircraft denoted as 𝑓 𝑗 , ∀ 𝑗 ∈ J, where J represents a set containing all aircraft in the system except the ownship. Thus,

we can define s𝑜 as s𝑜 = [𝜻 , 𝑓1, . . . , 𝑓 𝑗].

2. Action Space

The action space of the MDP is composed of the individual action spaces of the three inputs: the commanded

flight-path angle (𝜸𝑐), the commanded roll angle 𝝓𝑐, and the commanded airspeed (V𝑐). The action space of 𝑉𝑐 is

composed of 10 linearly spaced discrete values between 25𝑚/𝑠 and 70𝑚/𝑠. The minimum speed of 25𝑚/𝑠 is chosen

based on the stall speed performance of the aircraft [32]. On the other hand, the action spaces of 𝜸𝑐 and 𝝓𝑐 are discrete

sets of actions sampled from a logarithm function through the range of each input. Such an action space enables one to

take more control actions when the inputs are near zero, and coarse control actions as the aircraft gets further away from

its trajectory. As a result, fine control actions can be taken when a small correcting action to adjust small deviations from

the trajectory is desired, and large control actions can be taken when a significant change in the course of the aircraft

trajectory is desired. Consequently, the inputs of 𝜸𝑐 and 𝝓𝑐 are logarithmically spaced within a range of 15 input values.

6

The logarithmically spaced input set in degree is computed as follows:

𝜸𝑐 = [−19.99,−16.24,−12.66,−9.26,−6.02,−2.94,−0.01, 0, 0.01, 2.94, 6.02, 9.26, 12.66, 16.24, 19.99] (3)

𝝓𝑐 = [−19.99,−16.24,−12.66,−9.26,−6.02,−2.94,−0.01, 0, 0.01, 2.94, 6.02, 9.26, 12.66, 16.24, 19.99] (4)

Finally, the joint action space becomes:

A = {𝜸𝑐, 𝝓𝑐,V𝑐}. (5)

3. Reward Function

The reward function is the primary mechanism we use to control the behavior of an MDP agent’s behavior. A reward

function 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) represents the reward that an agent, currently at 𝑠𝑡 , collects after taking a control action 𝑎𝑡 and

arriving at 𝑠𝑡+1. In this work, we utilized both positive and negative rewards, as depicted in Table 1. Positive rewards

are collected by each aircraft as they make progress toward their destination. Conversely, negative rewards are used to

penalize the aircraft when they enter the reachable set of intruder aircraft. The use of positive and negative rewards

enables the aircraft to fly to their assigned vertiport while avoiding possible collisions with other nearby aircraft.

Table 1 Reward function for each aircraft

Reward source Reward magnitude Location Decay factor Description

Intruder aircraft −(100𝑡 + 500) Inside reachable-set of intruder 0.97 Collision avoidance
Destination 200 Manually placed 0.999 Vertiport attraction

4. Value Function

Once the MDP is formulated as a tuple of (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡), we need to solve the formulated MDP to arrive at the optimal

solution. The specific value function structure is adopted from [33], where the authors present a highly scalable solution

approach to deterministic terminating MDPs. The methods and proofs for computing the value function are detailed in

the full paper. However, the key insight proposed in the approach is that it is possible to rewrite the value function

of deterministic terminating MDPs solely as a function of the discount factor, reward magnitude, and distance metric

between the current state of the agent and the reward source.

V(𝑠) = 𝜅+ 𝛿 (𝑠,𝑠+𝑖) · 𝑟+𝑖 + 𝜅−𝛿 (𝑠,𝑠
−
𝑖
) · 𝑟−𝑖 , (6)

7

where 𝜅, 𝑟𝑖 , and 𝛿(𝑠, 𝑠𝑖) represent the discounting factor, reward magnitude, and distance to the reward source 𝑠𝑖 from

the current state 𝑠, respectively. Notations 𝜅+/𝜅− , 𝑟+
𝑖
/𝑟−
𝑖

, and 𝑠+
𝑖
/𝑠−
𝑖

differentiate between positive and negative rewards.

B. Reachability Analysis

To avoid collision between aircraft, the MDP formulation of the trajectory planner presented in the previous

subsections requires identifying the possible future states of the intruder aircraft. In this paper, we adopted a reachability

analysis-based method to compute all the possible future states of each nearby aircraft. In this study, the concept of

discrepancy function is adopted from [27] to formulate the reachability analysis problem. This section summarizes

discrepancy functions and how they can be used to compute the reachable set of a dynamical system.

A discrepancy function is a continuous function primarily used to measure the convergence or divergence nature of

trajectories formally [34]. Hence, it generates the over-approximation of the reachable set by providing the upper and

lower bounds of the trajectories. In [34], it has been demonstrated that discrepancy functions are generalizations of

other well-known proof certificates, such as Contraction metrics and Incremental Lyapunov functions. A discrepancy

function 𝛽 : R𝑛 × R𝑛 × R≥0 → R≥0 has two requirements:

1) 𝛽 upper bounds the distance between the trajectories,

∥𝝃 (𝜻0, 𝑡) − 𝝃 (𝜻 ′0, 𝑡)∥ ≤ 𝛽(𝜻0, 𝜻
′
0, 𝑡), (7)

where, 𝝃 (𝜻0, 𝑡) and 𝝃 (𝜻 ′0, 𝑡) represent any pair of trajectories with initial conditions 𝜻0 and 𝜻 ′0, respectively.

2) 𝛽 converges to zero as the initial states of the trajectories converge.

for any 𝑡, as 𝜻0 → 𝜻 ′0, 𝛽(·, ·, 𝑡) → 0. (8)

The first requirement expresses 𝛽 as a function of the initial conditions of any two trajectories and the elapsed time. It

upper bounds the distance between the trajectories at any time so that every possible state of the system is represented in

the reachable set. On the other hand, the second requirement is used to keep the over-approximation error low.

There are methods developed in the literature to compute 𝛽 from differential equations [35]. However, in this study,

we use a tool known as DryVR [27] that formulates the problem of finding the discrepancy function as a problem of

learning linear separator to achieve high computational efficiency. The learning linear separator approach does not

depend on the system’s dynamics and uses a few simulations to arrive at a discrepancy function with probabilistic

correctness guarantees.

The discrepancy function adopted in DryVR is an exponential function that grows and shrinks with time and has a

general form:

𝛽(𝑢, 𝑣, 𝑡) = ∥𝑢 − 𝑣∥𝐾𝑒�̂�𝑡 , (9)

8

where 𝐾 and �̂� (we write �̂� to distinguish from 𝛾, which is the flight path angle) are constants that govern the behavior

of the exponential function, and we learn them using the learning linear separator approach.

Considering Equation (9) and the first requirement of a discrepancy function in Equation (7):

∥𝝃 (𝜻0, 𝑡) − 𝝃 (𝜻 ′0, 𝑡)∥ ≤ ∥𝜻0 − 𝜻 ′0∥𝐾𝑒
�̂�𝑡 , ∀𝑡 ∈ [0, 𝑇] . (10)

Equation (10) can be rearranged by taking logarithms of both sides as:

ln

(𝝃 (𝜻0, 𝑡) − 𝝃 (𝜻 ′0, 𝑡)
𝜻0 − 𝜻 ′0

)
≤ ln𝐾 + �̂�𝑡, ∀𝑡 ∈ [0, 𝑇] . (11)

The above inequality has a general structure of:

𝜇 ≤ 𝑎𝜈 + 𝑏, ∀(𝜇, 𝜈) ∈ 𝚪. (12)

where for 𝚪 ⊆ R × R, a pair (𝑎, 𝑏) is a linear separator and (𝜇, 𝜈) represents
(
ln ∥𝝃 (𝜻0 ,𝑡)−𝝃 (𝜻 ′0 ,𝑡) ∥

∥𝜻0−𝜻 ′0 ∥
, 𝑡

)
in (11). Therefore,

the learning task is identifying the (𝑎, 𝑏) values from sampling points that make the inequality in (12) a linear separator

for the large portion of points in 𝚪. The sampling points are assumed to be drawn based on unknown distributionD. The

probabilistic algorithm provided in Algorithm 1 has been proposed in [27] to identify the appropriate values of (𝑎, 𝑏).

The separator discovered by the above algorithm has a correctness guarantee with high probability. The proof can be

obtained in [27]. To minimize the conservative nature of the discrepancy function, we adopt a piece-wise exponential

discrepancy function of the form 𝛽(𝜻0, 𝜻
′
0, 𝑡) = ∥𝜻0 − 𝜻 ′0∥𝐾𝑒

∑𝑖−1
𝑗=1 𝛾 𝑗 (𝑡 𝑗−𝑡 𝑗−1)+𝛾𝑖 (𝑡−𝑡𝑖−1) from [27]. This enables us to

divide the time window for the reachable set into several smaller segments and find discrepancy parameters for each

segment, resulting in less conservative reachable bounds.

Algorithm 1: Reachability Analysis
Procedure ReachabilityAnalysis():

Input : Action set A, aircraft dynamics ¤𝜻 (𝑡), initial state 𝜻0, time horizon 𝑇
Output : Reachable set R𝑖 (𝜻 𝑖 (𝑡), 𝑇)

1 𝚪(𝑡) ← 𝑓 (𝜻 (𝑡),A); /* randomly sample from A and generate a set of trajectories */
2 ∥𝜻0 − 𝜻 ′0∥ ← DC (𝚪(𝑡0)) ; /* compute distance between initial states */
3 ∥𝝃 (𝜻0, 𝑡) − 𝝃 (𝜻 ′0, 𝑡)∥ ← DC (𝚪(𝑡)); /* compute distance between trajectories */

4 𝜇(𝑡) ← ln ∥𝝃 (𝜻0 ,𝑡)−𝝃 (𝜻 ′0 ,𝑡) ∥
∥𝜻0−𝜻 ′0 ∥

; /* compute sensitivity parameters */

5 𝜈(𝑡) ← 𝑡

6
∑𝑛

𝑖 𝜇𝑖 = 𝜈𝑖𝑎𝑖 + 𝑏𝑖 ← covhull(𝜇(𝑡), 𝜈(𝑡)); /* compute discrepancy parameters */

7 𝑎𝑖 ← Δ𝜇𝑖
Δ𝑡

, 𝑏𝑖 ← 𝜇𝑖 − 𝜈𝑖𝑎𝑖
8 𝛽(𝜻0, 𝜻

′
0, 𝑡) ← ∥𝜻0 − 𝜻 ′0∥𝐾𝑒

∑𝑖−1
𝑗=1 𝛾 𝑗 (𝑡 𝑗−𝑡 𝑗−1)+𝛾𝑖 (𝑡−𝑡𝑖−1) ; /* compute the piece-wise exponential

discrepancy function */
9 R𝑖 (𝜻 𝑖 (𝑡), 𝑇) ← 𝛽(𝜻0, 𝜻

′
0, 𝑡)

9

0 1 2 3 4 5

time, s

0

50

100

150

200

250

x
,
m

 Reachable set of the aircraft (state x)

Upper Bound

Lower Bound

(a) Reachable set of the aircraft (state x)

0 50 100 150 200 250

y, m

0

20

40

60

80

100

120

140

x
,

m

Projection of reachtube on x-y axis

(b) Projection of reach-tube on x-y axis

0 1 2 3 4 5

time, s

0

20

40

60

80

100

120

140

y
,
m

Reachable set of the aircraft (state y)

Upper Bound

Lower Bound

(c) Reachable set of the aircraft (state y)

0 50 100 150 200 250

z, m

-40

-30

-20

-10

0

10

20

x
,

m

Projection of reachtube on x-z axis

(d) Projection of reach-tube on x-z axis

0 1 2 3 4 5

time, s

-40

-30

-20

-10

0

10

20

z
,

m

Reachable set of the aircraft (state z)

Upper Bound

Lower Bound

(e) Reachable set of the aircraft (state z)

0 50 100 150

z, m

-40

-30

-20

-10

0

10

20

y
,

m

Projection of reachtube on y-z axis

(f) Projection of reach-tube on y-z axis

Fig. 2 Generated reachable set using Algorithm 1.

10

The procedure to over-approximate the reachable set of an aircraft is outlined in Algorithm 1. The inputs to the

algorithm include the aircraft dynamics, the action set A, the initial states of the aircraft 𝜻0, and the time horizon

𝑇 . The algorithm then generates trajectories by randomly choosing from the set of control actions. It then computes

the maximum pair-wise distance between the initial states and each trajectory using Chebyshev distance and gets the

sensitivity parameters for each time step (𝜇(𝑡) and 𝜈(𝑡)). The convex hull of these parameters is then determined, and

the values 𝑎 and 𝑏 are obtained, which represent the discrepancy function 𝐾 and �̂�.

Figures 2a to 2f show how a reachable set of aircraft can be over-approximated by simulating several trajectories

from the current state. Figures 2a, 2c, and 2e depict the reachable sets of 𝑥, 𝑦, and 𝑧 states of the aircraft, respectively.

Figure 2b, 2d, and 2f show the projections of the reach-tube of an aircraft on different planes.

C. The Proposed Trajectory Planning Framework

The detailed working procedure of the trajectory planning is provided in Algorithm 2. Here, we highlight the two

main modules: Reachability Analysis and Trajectory Planner.

Trajectory Planner: The proposed framework works in a decentralized manner, where each aircraft will be

responsible for choosing a control action that satisfies the reach-avoid property defined below. To achieve this, it first

forward projects the future states of an aircraft using the dynamics of the aircraft and the control actions provided in the

action space. Then, it computes the positive and negative rewards for the projected states and picks the control action

that maximizes the total reward.

Reachability Analysis: While building the negative rewards, the framework considers the reachable sets of nearby

intruder aircraft and the terrain around the aircraft. The algorithms discussed in section III.B will be utilized to compute

the reachable sets.

The overall operational procedure of the proposed trajectory planner is such that the framework first assigns initial

and goal states for each aircraft in the system. Subsequently, for each aircraft, it identifies the positive and negative

reward sources as discussed in III.A.3. After the reward sources are identified, it forward projects the future states of the

aircraft using the action sets and computes the values of each future state using the value function as given in Equation 6.

The best action yielding the maximum total reward is then selected, and the states of the aircraft are updated using the

chosen control action. This process is repeated iteratively for each aircraft until each aircraft reaches its designated

destination vertiport.

Reach-avoid property: For an aircraft starting from an initial state 𝜻 (0), we say the reach-avoid property is satisfied

if and only if its trajectory 𝜻 (𝑡), (1) never enters into an unsafe set S𝑢, and (2) reaches a goal set S𝑔 within a finite time

horizon 𝑇 . These two conditions can be expressed mathematically as follows:

(∀𝑡 ∈ 0 ≤ 𝑡 ≤ 𝑇, 𝝃 (𝜻 (0), 𝑡) ∩ S𝑢 = ∅)
∧
(∃ 𝑡 0 ≤ 𝑡 ≤ 𝑇, 𝝃 (𝜻 (0), 𝑡) ∩ S𝑔 ≠ ∅) (13)

11

Algorithm 2: Online Verified Trajectory Planning Framework
Procedure TrajectoryPlanner(world state):

1 S0← randomly initialize aircraft states
2 repeat
3 for each aircraft i do
4 𝜻 𝑡 ← current state of the ownship
5 𝚪(𝑡) ← 𝑓 (𝜻 (𝑡),A) ; /* project future states of the ownship using the action

set */
6 P+ ← vertiport location ; /* build positive reward for destination */
7 𝜻 𝑗 ← identify nearby aircraft
8 R𝑖 (𝜻 𝑖 (𝑡), 𝑇) ← Reachability Analysis(𝜻 𝑗) ; /* compute the reach set using

Algorithm 1 */
9 P− ← R𝑖 (𝜻 𝑖 (𝑡), 𝑇) ; /* build negative reward */

10 for 𝜻 ∈ 𝚪 do
11 𝑑𝑝 ← ∥𝜻 𝑗 − location(P+)∥2
12 r𝑝 ← reward(P+)
13 𝜸𝑝 ← discount(P+)
14 V+𝑝 ← |r𝑝 | · 𝜸

𝑑𝑝

𝑝 ; /* compute positive values for each future state */

15 V+max ← max
𝑝

V+𝑝
16 for 𝑛𝑖 ∈ P− do
17 𝑑𝑛 ← ∥𝜁 𝑗 − location(𝑛𝑖)∥2
18 𝝆𝑛 ← 𝑑𝑛 < radius(𝑛𝑖)
19 r𝑛 ← reward(𝑛𝑖)
20 𝜸𝑛 ← discount(𝑛𝑖)
21 V−𝑛𝑖 ← int(𝝆𝑛) · |r𝑛 | · 𝜸

𝑑𝑛
𝑛 ; /* compute negative values for each future state

*/
22 if altitude(𝜻 𝑡) < penalty altitude then
23 Vterrain← 1000 − altitude(𝜻 𝑡)
24 else

Vterrain← 0
25 V∗ [𝜻 𝑖] ← V+max −𝑉−max − Vterrain ; /* compute total values for each future state */
26 𝑖max ← argmax

𝜁

(V∗)

27 𝜻 𝑡+1 ← Z1 [𝑖max]
28 S𝑡+1 [𝑖]← 𝜻 𝑡+1

until each aircraft reaches its final destination;

In the above equation, the unsafe set S𝑢 is composed of the reachable sets of nearby intruders and the terrain.

Theorem 1: Consider aircraft 𝑖 has access to other nearby intruder aircraft’s dynamics and current states. In

addition, consider aircraft 𝑖 has information about the environment’s terrain. Then, aircraft 𝑖 can choose a control action

from the action space A for its next state that is guaranteed to satisfy the reach-avoid property given in Equation 13.

Assumption 1: We assumed a noise-free sensing scheme that enables our ownship aircraft to access the current

states of nearby intruder aircraft’s current position.

Assumption 2: We assumed a homogeneous fleet of aircraft where each aircraft in the system has the same dynamics.

Therefore, the ownship has access to the dynamics and the action set of each nearby aircraft.

Proof: Consider the reach-avoid property is not satisfied for aircraft 𝑖. Such an assumption entails that either the

12

aircraft has entered an unsafe state S𝑢, or it is not progressing to its goal state S𝑔. However, because the reachable

sets of nearby aircraft and the terrain information are accessible, it can choose a control action that enables the aircraft

to avoid entering the reachable sets of nearby aircraft. In addition, since the MDP-based trajectory planner generates

a reward that motivates the aircraft to move to its destination, aircraft 𝑖 will always progress towards its destination.

Hence, Theorem 1 is true by contradiction. ■

IV. Results and Discussion
In this section, the performance of the proposed method is discussed. Since the objective of this paper is to develop

a safe and scalable UAM trajectory planning framework, the two criteria we used to evaluate the performance of

the proposed algorithm are mean computational time and the number of Near Mid Air Collisions (NMAC). Mean

computation time, which is the time taken in each step by the algorithm to compute the safe trajectory for a single

aircraft, demonstrates the computational efficiency of the method. On the other hand, NMAC, defined as a loss of 152

meters of horizontal and 30 meters of vertical separation [36], is used to evaluate the ability of the algorithm to guide

the aircraft and avoid collisions.

A. Scenario Description

A snapshot of the simulation environment we used to evaluate the performance of the trajectory planning framework

is shown in Fig 3. The simulation defined a geographical bounding box that encompasses a volume of 15𝑘𝑚 radius. The

aircraft are assigned to take off from their origin vertiports and fly to destination vertiports located on the opposite side

of their origin. The environment is configurable to accommodate a variable number of vertiports and aircraft, which

utilize the proposed trajectory planning framework in a distributed manner.

In reference to the designed scenario, it is important to note that, as depicted in Figure 3, all aircraft are scheduled

to travel through a central location in the environment. The environment simulates the operation of 32 aircraft, each

rendered as a red circle. The black boxes represent the vertiports where the aircraft take off and navigate towards. The

black lines represent the aircraft trajectories for the next ten steps. The blue lines indicate the paths traveled by aircraft.

This scenario, although unlikely to occur in a typical UAM setting, serves as a means to evaluate the detect-and-avoid

(DAA) capabilities of the system under adverse conditions where strategic deconfliction fails.

We present experimental results on a different number of aircraft assigned to fly to their designated goal states. The

algorithm utilized in these experiments has been implemented using MATLAB. Additionally, a video demonstration

showcasing the results of the algorithm for 8∗, 16†, and 32‡ aircraft can be viewed on YouTube.

All experiments were conducted on a 3.20 GHZ Intel Xeon (R) CPU with 125.4 GB RAM. Each experiment was
∗https://youtu.be/Ynfl1Js3RCU
†https://youtu.be/bVnMpdz8ANU
‡https://youtu.be/49wUrg0ZIko

13

repeated 25 times for each aircraft number, with randomly generated initial locations for the aircraft. The computational

time and NMACs for each aircraft number are reported.

Fig. 3 Snapshot of the simulation environment.

Table 2 NMAC performance

Aircraft mean std

2 0 0
4 0 0
8 0 0
16 1.36 5.12
32 9.96 10.91

Table 3 Computation time performance

Aircraft mean (sec) std (sec) throughput (sec)

2 0.03 0.03 31.05
4 0.05 0.06 99.46
8 0.11 0.14 489.16
16 0.17 0.21 1815.25
32 0.27 0.29 6448.43

The experimental results demonstrate the effectiveness of the proposed trajectory planner in guiding the motion of

each aircraft from its initial position to its assigned vertiport. Tables 2 and 3 present the trajectory planner’s NMAC

and computational time performances of the trajectory planner. As shown in Table 3, the mean computational time of

the framework increases as the number of aircraft in the system increases, but it grows in a polynomial order with the

increased number of aircraft, indicating the scalability of the approach. Table 3 also presents the throughput performance

14

of the algorithm, defined as the total time taken to guide all aircraft involved in the system to their assigned vertiport

successfully.

On the other hand, despite utilizing a formal verification scheme based on reachability analysis, as indicated in Table

2, there were instances of NMACs observed in the environment as the number of aircraft increased. This is primarily

due to the fact that the MDP formulation converts hard constraints, such as collisions, into benign conditions represented

by negative rewards. As a result, in congested environments, there may be instances of momentary violations of safety

constraints. In the subsequent subsections, we will discuss the methods employed to address this issue.

B. Action Shielding

One potential solution to the challenge of enforcing hard constraints on an MDP agent is through the implementation

of action shielding [37]. This approach filters the agent’s actions through a mechanism that prevents actions leading

to unsafe states, as illustrated in Figure 4. The value of states is used to filter out actions that result in unsafe states.

Specifically, if the value of a state, resulting from a certain action, is negative — which in our context indicates that the

aircraft is within the reachable set of the intruder — the shield will remove the action from the set of valid actions.

However, in instances where all control actions lead to unsafe states, this technique results in a deadlock since all

control actions in the action set are filtered out by the shield. To circumvent this scenario, we propose an alternative

control action for a short time horizon. In these rare cases, the action sets result in aggressive maneuvers but ensure

safe operation by compromising comfort. Moreover, we have included the number of times (average) these action sets

have been activated in the action-shielding strategy in Table 4 to provide additional insight into the effect of these

control actions on overall aircraft operation. As such, the new control action set (in degree) to be implemented during a

deadlock will be:

𝜸𝑐 = [−70,−60,−50,−40,−30, 30, 40, 50, 60, 70] (14)

𝝓𝑐 = [−70,−60,−50,−40,−30, 30, 40, 50, 60, 70] (15)

Tables 4 and 5 present the performance of the trajectory planner with the added enhancement of action shielding

with regard to the number of NMACs and computational time, respectively. As shown in Table 4, it is evident that the

addition of action shielding has resulted in a significant improvement in the safety performance of the trajectory planner.

However, as demonstrated in Table 5, the change in the computational time is minimal.

C. Reward Shaping

Many existing techniques in the literature address the issue of undesirable behavior exhibited by MDP agents

through the use of reward engineering or reward shaping. Reward shaping refers to the process of modifying the reward

received by the agent to elicit desired behavior, as outlined in [38]. In other words, instead of using the traditional MDP

15

Action set A

Shield

Safe
Actions

Â

¤𝜻 = f(𝜻, Â)
Future States

Value Function

V(𝑠) = 𝜅 𝛿 (𝑠,𝑠𝑖) · 𝑟𝑖

Action Selector
𝑎(𝑡′) = max

𝑎
(V(𝑠))

State Update
¤𝜻 = f(𝜻 , 𝑎(𝑡′))

Positive Rewards

V(S𝑔) = 200

Negative Rewards
V(R𝑖) = −(100𝑡 + 500)

Fig. 4 The implemented action shielding procedure.

Table 4 NMAC performance

Aircraft mean std # of deadlock

2 0 0 0
4 0 0 0
8 0 0 0
16 1.40 2.63 0.01
32 2.61 4.76 0.13

Table 5 Computation time performance

Aircraft mean (sec) std (sec) throughput (sec)

2 0.03 0.02 30.00
4 0.05 0.06 92.55
8 0.10 0.12 395.10
16 0.17 0.19 1594.73
32 0.23 0.27 5623.16

M = (S,A,T, 𝜅, 𝑅), we use a transformed MDP M′ = (S,A,T, 𝜅, 𝑅′), where 𝑅′ = 𝑅 + 𝐹 is the reward function in the

transformed MDP, and 𝐹 : S × A × S→ 𝑅 is a bounded real-valued function known as the reward-shaping function.

The specific reward shaping function employed in this study is a difference of potentials 𝐹 (𝑠, 𝑎, 𝑠′) = Φ(𝑠′) − Φ(𝑠),

where Φ is the value function over states [39].

𝐹 (𝑠, 𝑎, 𝑠′) = 𝜅(V∗ (𝑠′)) − V∗ (𝑠), (16)

where, 𝜅 is the discount factor and V∗ (𝑠′) and V∗ (𝑠) are the values of the current and future states.

Tables 6 and 7 present the performance of the trajectory planner with the enhancement of reward shaping in terms of

the number of NMAC and computational time, respectively. From Table 7, we can see that the reward shaping technique

has led to a superior improvement in safety performance when compared to the action shielding technique. However,

the impact on computational time is negligible.

A performance comparison of the three proposed methods is shown in Figure 5. The results, as depicted in Figure

5a, indicate that the baseline trajectory planner, which does not utilize any reinforcement techniques, exhibits poor

safety performance. In contrast, the trajectory planner utilizing reward shaping demonstrates the best performance.

While the implementation of action shielding improves the performance of the baseline trajectory planner, it still falls

16

Table 6 NMAC performance

Aircraft mean std

2 0 0
4 0 0
8 0 0
16 0.24 1.20
32 1.48 3.63

Table 7 Computation time performance

Aircraft mean (sec) std (sec) throughput (sec)

2 0.03 0.02 29.68
4 0.05 0.06 101.37
8 0.11 0.13 463.09
16 0.18 0.23 1968.56
32 0.23 0.27 6311.54

short in comparison to the trajectory planner utilizing reward shaping. Figure 5b illustrates the computational time

performance comparison of the proposed methods, where it is evident that the differences in performance are minimal.

Based on the observed results, the advantages of incorporating action-shielding and reward-shaping strategies

into the baseline trajectory planner include improved safety and computational time. However, a disadvantage of the

reward-shaping strategy is the challenge associated with designing an appropriate potential function to shape the original

MDP formulation to achieve the desired behavior. Additionally, the disadvantages of the action-shielding strategy

include the deadlock situation it causes and the aggressive maneuvers required to extricate the aircraft from this deadlock

situation.

2 4 8 16 32

Number of Aircraft

0

2

4

6

8

10

N
M
A
C

NMAC Performance Comparison

Baseline

Action Sheilding

Reward Shaping

(a) NMAC performance comparison

2 4 8 16 32

Number of Aircraft

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
om

pu
ta
ti
on

T
im

e
[s
ec
]

Computation Time Comparison

Baseline

Action Sheilding

Reward Shaping

(b) Computation time comparison

Fig. 5 Performance comparison of the three proposed methods.

V. Conclusion
This study proposes a safe and scalable trajectory planning framework for urban air mobility (UAM) systems. The

proposed framework operates in a decentralized manner, allowing each aircraft to independently plan its trajectory based

17

on information about its surrounding environment. The framework employs a Markov Decision Process (MDP)-based

trajectory planner and a data-driven reachability analysis module to synthesize each aircraft’s trajectory in real-time. To

enhance safety performance, techniques such as reward shaping and action shielding have been explored to be included

in the overall framework. The effectiveness of the framework has been evaluated through simulations involving up to 32

aircraft in UAM scenarios, and the results demonstrate the computational efficiency and safe operation of the trajectory

planner.

Acknowledgments
This project is partially supported by NASA Grant 80NSSC21M0087 under the NASA System-Wide Safety (SWS)

program.

References
[1] Patterson, M. D., Antcliff, K. R., and Kohlman, L. W., “A proposed approach to studying urban air mobility missions including

an initial exploration of mission requirements,” Annual Forum and Technology Display, NASA NF1676L-28586, May 2018.

[2] Frazzoli, E., Mao, Z.-H., Oh, J.-H., and Feron, E., “Resolution of conflicts involving many aircraft via semidefinite programming,”

Journal of Guidance, Control, and Dynamics, Vol. 24, No. 1, 2001, pp. 79–86. https://doi.org/10.2514/2.4678.

[3] Raghunathan, A. U., Gopal, V., Subramanian, D., Biegler, L. T., and Samad, T., “Dynamic optimization strategies for

three-dimensional conflict resolution of multiple aircraft,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 4, 2004,

pp. 586–594. https://doi.org/10.2514/1.11168.

[4] Enright, P. J., and Conway, B. A., “Discrete approximations to optimal trajectories using direct transcription and nonlinear

programming,” Journal of Guidance, Control, and Dynamics, Vol. 15, No. 4, 1992, pp. 994–1002. https://doi.org/10.2514/3.

20934.

[5] Schouwenaars, T., De Moor, B., Feron, E., and How, J., “Mixed integer programming for multi-vehicle path planning,” European

Control Conference (ECC), IEEE, 2001, pp. 2603–2608. https://doi.org/10.23919/ECC.2001.7076321.

[6] Richards, A., and How, J. P., “Aircraft trajectory planning with collision avoidance using mixed integer linear programming,”

Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301), Vol. 3, IEEE, 2002, pp. 1936–1941.

https://doi.org/10.1109/ACC.2002.1023918.

[7] Pallottino, L., Feron, E. M., and Bicchi, A., “Conflict resolution problems for air traffic management systems solved with

mixed integer programming,” IEEE Transactions on Intelligent Transportation Systems, Vol. 3, No. 1, 2002, pp. 3–11.

https://doi.org/10.1109/6979.994791.

[8] Vela, A., Solak, S., Singhose, W., and Clarke, J.-P., “A mixed integer program for flight-level assignment and speed control for

18

https://doi.org/10.2514/2.4678
https://doi.org/10.2514/1.11168
https://doi.org/10.2514/3.20934
https://doi.org/10.2514/3.20934
https://doi.org/10.23919/ECC.2001.7076321
https://doi.org/10.1109/ACC.2002.1023918
https://doi.org/10.1109/6979.994791

conflict resolution,” Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th

Chinese Control Conference, IEEE, 2009, pp. 5219–5226. https://doi.org/10.1109/CDC.2009.5400520.

[9] Mellinger, D., Kushleyev, A., and Kumar, V., “Mixed-integer quadratic program trajectory generation for heterogeneous

quadrotor teams,” 2012 IEEE International Conference on Robotics and Automation, IEEE, 2012, pp. 477–483. https:

//doi.org/10.1109/ICRA.2012.6225009.

[10] Augugliaro, F., Schoellig, A. P., and D’Andrea, R., “Generation of collision-free trajectories for a quadrocopter fleet: A

sequential convex programming approach,” IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2012,

pp. 1917–1922. https://doi.org/10.1109/IROS.2012.6385823.

[11] Morgan, D., Chung, S.-J., and Hadaegh, F. Y., “Model predictive control of swarms of spacecraft using sequential convex

programming,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 6, 2014, pp. 1725–1740. https://doi.org/10.2514/1.

G000218.

[12] Acikmese, B., and Ploen, S. R., “Convex programming approach to powered descent guidance for mars landing,” Journal of

Guidance, Control, and Dynamics, Vol. 30, No. 5, 2007, pp. 1353–1366. https://doi.org/10.2514/1.27553.

[13] Delahaye, D., Peyronne, C., Mongeau, M., and Puechmorel, S., “Aircraft conflict resolution by genetic algorithm and B-spline

approximation,” EIWAC 2010, 2nd ENRI International Workshop on ATM/CNS, 2010, pp. pp–71.

[14] Cobano, J. A., Conde, R., Alejo, D., and Ollero, A., “Path planning based on genetic algorithms and the monte-carlo method to

avoid aerial vehicle collisions under uncertainties,” IEEE International Conference on Robotics and Automation, IEEE, 2011,

pp. 4429–4434. https://doi.org/10.1109/ICRA.2011.5980246.

[15] Pontani, M., and Conway, B. A., “Particle swarm optimization applied to space trajectories,” Journal of Guidance, Control, and

Dynamics, Vol. 33, No. 5, 2010, pp. 1429–1441. https://doi.org/10.2514/1.48475.

[16] Razzaghi, P., Tabrizian, A., Guo, W., Chen, S., Taye, A., Thompson, E., and Wei, P., “A Survey on Reinforcement Learning in

Aviation Applications. arXiv 2022,” arXiv preprint arXiv:2211.02147, June 2023.

[17] Pallottino, L., Scordio, V. G., Frazzoli, E., and Bicchi, A., “Probabilistic verification of a decentralized policy for conflict

resolution in multi-agent systems,” Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA

2006., IEEE, 2006, pp. 2448–2453. https://doi.org/10.1109/ROBOT.2006.1642069.

[18] Bertram, J., and Wei, P., “Distributed computational guidance for high-density urban air mobility with cooperative and

non-cooperative collision avoidance,” AIAA Scitech 2020 Forum, 2020, p. 1371. https://doi.org/10.2514/6.2020-1371.

[19] Duggirala, P. S., Mitra, S., Viswanathan, M., and Potok, M., “C2E2: A verification tool for stateflow models,” Tools and

Algorithms for the Construction and Analysis of Systems: 21st International Conference, TACAS 2015, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings

21, Springer, 2015, pp. 68–82. https://doi.org/10.1007/978-3-662-46681-0_5.

19

https://doi.org/10.1109/CDC.2009.5400520
https://doi.org/10.1109/ICRA.2012.6225009
https://doi.org/10.1109/ICRA.2012.6225009
https://doi.org/10.1109/IROS.2012.6385823
https://doi.org/10.2514/1.G000218
https://doi.org/10.2514/1.G000218
https://doi.org/10.2514/1.27553
https://doi.org/10.1109/ICRA.2011.5980246
https://doi.org/10.2514/1.48475
https://doi.org/10.1109/ROBOT.2006.1642069
https://doi.org/10.2514/6.2020-1371
https://doi.org/10.1007/978-3-662-46681-0_5

[20] Wang, Y., Huang, C., Wang, Z., Wang, Z., and Zhu, Q., “Design-while-verify: correct-by-construction control learning

with verification in the loop,” Proceedings of the 59th ACM/IEEE Design Automation Conference, 2022, pp. 925–930.

https://doi.org/10.1145/3489517.3530556.

[21] Fan, C., Qin, Z., Mathur, U., Ning, Q., Mitra, S., and Viswanathan, M., “Controller synthesis for linear system with reach-avoid

specifications,” IEEE Transactions on Automatic Control, Vol. 67, No. 4, 2021, pp. 1713–1727. https://doi.org/10.1109/TAC.

2021.3069723.

[22] Fisac, J. F., Chen, M., Tomlin, C. J., and Sastry, S. S., “Reach-avoid problems with time-varying dynamics, targets and

constraints,” Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, 2015, pp. 11–20.

https://doi.org/10.1145/2728606.2728612.

[23] Bansal, S., Chen, M., Herbert, S., and Tomlin, C. J., “Hamilton-Jacobi reachability: A brief overview and recent advances,”

2017 IEEE 56th Annual Conference on Decision and Control (CDC), IEEE, 2017, pp. 2242–2253. https://doi.org/10.1109/

CDC.2017.8263977.

[24] Althoff, M., “An Introduction to CORA 2015,” ARCH14-15. 1st and 2nd International Workshop on Applied veRification for

Continuous and Hybrid Systems, EPiC Series in Computing, Vol. 34, EasyChair, 2015, pp. 120–151. https://doi.org/10.29007/

zbkv.

[25] Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., and Maler, O.,

“SpaceEx: Scalable verification of hybrid systems,” International Conference on Computer Aided Verification, Springer, 2011,

pp. 379–395. https://doi.org/10.1007/978-3-642-22110-1.

[26] Chen, X., Ábrahám, E., and Sankaranarayanan, S., “Flow*: An analyzer for non-linear hybrid systems,” International

Conference on Computer Aided Verification, Springer, 2013, pp. 258–263. https://doi.org/10.1007/978-3-642-39799-8.

[27] Fan, C., Qi, B., Mitra, S., and Viswanathan, M., “DryVR: Data-Driven Verification and Compositional Reasoning for Automotive

Systems,” Computer Aided Verification, edited by R. Majumdar and V. Kunčak, Springer International Publishing, Cham, 2017,

pp. 441–461. https://doi.org/10.1007/978-3-319-63387-9_22.

[28] Hsieh, C., Sibai, H., Taylor, H., Ni, Y., and Mitra, S., “SkyTrakx: A Toolkit for Simulation and Verification of Unmanned

Air-Traffic Management Systems,” 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), IEEE, 2021,

pp. 372–379. https://doi.org/10.1109/ITSC48978.2021.9564492.

[29] Taye, A. G., Bertram, J., Fan, C., and Wei, P., “Reachability based Online Safety Verification for High-Density Urban Air

Mobility Trajectory Planning,” AIAA AVIATION 2022 Forum, 2022, p. 3542. https://doi.org/10.2514/6.2022-3542.

[30] Federal Aviation Administration, “ADS-B (Automatic Dependent Surveillance-Broadcast),” , 2024. URL https://www.faa.gov/

about/office_org/headquarters_offices/avs/offices/afx/afs/afs400/afs410/ads-b, accessed: 2024-02-23.

20

https://doi.org/10.1145/3489517.3530556
https://doi.org/10.1109/TAC.2021.3069723
https://doi.org/10.1109/TAC.2021.3069723
https://doi.org/10.1145/2728606.2728612
https://doi.org/10.1109/CDC.2017.8263977
https://doi.org/10.1109/CDC.2017.8263977
https://doi.org/10.29007/zbkv
https://doi.org/10.29007/zbkv
https://doi.org/10.1007/978-3-642-22110-1
https://doi.org/10.1007/978-3-642-39799-8
https://doi.org/10.1007/978-3-319-63387-9_22
https://doi.org/10.1109/ITSC48978.2021.9564492
https://doi.org/10.2514/6.2022-3542
https://www.faa.gov/about/office_org/headquarters_offices/avs/offices/afx/afs/afs400/afs410/ads-b
https://www.faa.gov/about/office_org/headquarters_offices/avs/offices/afx/afs/afs400/afs410/ads-b

[31] Beard, R. W., and McLain, T. W., Small unmanned aircraft: Theory and practice, Princeton University Press, 2012.

https://doi.org/10.1515/9781400840601.

[32] Kimberlin, R. D., Flight Testing of Fixed Wing Aircraft, American Institute of Aeronautics Astronautics, 2003. https:

//doi.org/10.2514/4.861840.

[33] Bertram, J., Wei, P., and Zambreno, J., “A Fast Markov Decision Process-Based Algorithm for Collision Avoidance in

Urban Air Mobility,” IEEE Transactions on Intelligent Transportation Systems, Vol. 23, No. 9, 2022, pp. 15420–15433.

https://doi.org/10.1109/TITS.2022.3140724.

[34] Duggirala, P. S., Mitra, S., and Viswanathan, M., “Verification of annotated models from executions,” 2013 Proceedings of the

International Conference on Embedded Software (EMSOFT), IEEE, 2013, pp. 1–10. https://doi.org/10.1109/EMSOFT.2013.

6658604.

[35] Fan, C., and Mitra, S., “Bounded verification with on-the-fly discrepancy computation,” International Symposium on Automated

Technology for Verification and Analysis, Springer, 2015, pp. 446–463. https://doi.org/10.1007/978-3-319-24953-7_32.

[36] Weinert, A., Alvarez, L., Owen, M., and Zintak, B., “A Quantitatively Derived NMAC Analog for Smaller Unmanned Aircraft

Systems Based on Unmitigated Collision Risk,” 2020. https://doi.org/10.20944/preprints202011.0503.v1.

[37] Könighofer, B., Lorber, F., Jansen, N., and Bloem, R., “Shield synthesis for reinforcement learning,” Leveraging Applications of

Formal Methods, Verification and Validation: Verification Principles: 9th International Symposium on Leveraging Applications

of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20–30, 2020, Proceedings, Part I 9, Springer, 2020, pp. 290–306.

https://doi.org/10.1007/978-3-030-61362-4_16.

[38] Memarian, F., Goo, W., Lioutikov, R., Niekum, S., and Topcu, U., “Self-supervised online reward shaping in sparse-reward

environments,” 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2021, pp. 2369–2375.

https://doi.org/10.1109/iros51168.2021.9636020.

[39] Ng, A. Y., Harada, D., and Russell, S., “Policy invariance under reward transformations: Theory and application to reward

shaping,” International Conference on Machine Learning (ICML), Vol. 99, 1999, pp. 278–287.

21

https://doi.org/10.1515/9781400840601
https://doi.org/10.2514/4.861840
https://doi.org/10.2514/4.861840
https://doi.org/10.1109/TITS.2022.3140724
https://doi.org/10.1109/EMSOFT.2013.6658604
https://doi.org/10.1109/EMSOFT.2013.6658604
https://doi.org/10.1007/978-3-319-24953-7_32
https://doi.org/10.20944/preprints202011.0503.v1
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1109/iros51168.2021.9636020

	Introduction
	Problem Formulation
	Problem Description
	Aircraft Dynamics

	Methodology
	Markov Decision Process Formulation
	State Space
	Action Space
	Reward Function
	Value Function

	Reachability Analysis
	The Proposed Trajectory Planning Framework

	Results and Discussion
	Scenario Description
	Action Shielding
	Reward Shaping

	Conclusion

