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Abstract— This paper presents a novel approach to address
the challenging problem of autonomous on-ramp merging,
where a self-driving vehicle needs to seamlessly integrate into
a flow of vehicles on a multi-lane highway. We introduce the
Lane-keeping, Lane-changing with Latent-state Inference and
Safety Controller (L3IS) agent, designed to perform the on-
ramp merging task safely without the comprehensive knowledge
about surrounding vehicles’ intents or driving styles. We also
present an augmentation of this agent called AL3IS that
accounts for observation delays, allowing the agent to make
more robust decisions in real-world environments with vehicle
to vehicle (V2V) communication delays. By modeling the unob-
servable aspects of the environment through latent states, such
as other drivers’ intents, our approach enhances the agent’s
ability to adapt to dynamic traffic conditions, optimize merging
maneuvers, and ensure safe interactions with other vehicles. We
demonstrate the effectiveness of our method through extensive
simulations generated from real traffic data and compare its
performance with existing approaches. L3IS shows a 99.90%
success rate in a challenging on-ramp merging case generated
from the real US Highway 101 data. We further perform
a sensitivity analysis on AL3IS to evaluate its robustness
against varying observation delays, which demonstrates an
acceptable performance of 93.84% success rate in 1-second V2V
communication delay.

I. INTRODUCTION

In the realm of modern transportation, the realization of
autonomous driving systems has emerged as a promising
avenue for enhancing road safety, traffic efficiency, and
overall driving experience. One critical aspect of this ad-
vancement is the seamless integration of self-driving vehicles
into complex and dynamic traffic scenarios, such as on-ramp
merging to a busy highway. Highway on-ramp merging areas
are considered bottlenecks of traffic-safety, because of their
reduced capacity and frequent changing maneuvers by the
vehicles in the traffic [1].

In a highway on-ramp merging scenario, to ensure a
safe and efficient merging, the ego vehicle should make a
sequence of real-time decisions on speed and lane changes
based on surrounding vehicles’ information and reasoning
about their willingness to cooperate. Planning methods offer
a crucial advantage in the context of reasoning about sur-
rounding vehicles’ information, as they enable the estimation
of behavior models that are correlated with easily measurable
states (e.g., velocity) [2].
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Fig. 1: Highway on-ramp merging scenario. Red: ego vehi-
cle; Blue: cooperative vehicles; Orange: aggressive vehicles;
Yellow: mainstream vehicles.

With the recent successes of reinforcement learning (RL)
in board games [3] and Atari [4], researchers tried to apply
RL-based algorithms to extended domains such as health care
[5], industry automation [6], natural language processing [7],
aviation [8], and autonomous driving [9]. In the case of on-
ramp merging, numerous studies leverage RL techniques to
ensure a safe and effective merging. An on-ramp merging
optimization control framework based on a deep RL that
optimizes lane keeping and lane-changing at the same time
was proposed in [10]. The proposed approach had a shorter
travel time and lower emergency braking rate compared to
baseline methods. However, it should be noted that their
framework could only accommodate a fixed number of
surrounding vehicles, limiting its applicability to real-world
scenarios. RL and model predictive control (MPC) were
combined in [11] to leverage their strengths together. The
authors claimed MPC solutions provide more robustness
to out-of-distribution traffic patterns and RL techniques are
better in terms of efficiency and passenger comfort. They
considered a single-lane highway merging scenario with one
default driving style for the surrounding vehicles. However,
they did not address the inclusion of various driving styles
for the surrounding vehicles or consider multi-lane highway
scenarios.

Developing safe merging control algorithms was the aim
of some other studies. A real-time bi-level control framework
was proposed in [12] that ensures safety using control barrier
functions (CBF). Combining learning-based control methods
with CBF was not addressed in this work. CBFs always need
a good approximation of the model of the system, which may
not be applicable to all driving scenarios. A probabilistic
CBF algorithm was proposed in [13] to account for model
uncertainty. The proposed algorithm was tested based on a
real dataset provided by the National Highway Traffic Safety
Administration [14].

Instead of using direct vehicle-to-vehicle (V2V) commu-
nication, [15] focused utilizing realistic sensor data to obtain
observations as input to its control framework. They also
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employed a game-theoretic reasoning based on Monte Carlo
RL in order to find a near-optimal policy. A passive actor-
critic (pAC) technique was suggested in [16] for selecting a
candidate spot for merging then used a multi-policy decision-
making method to merge to candidate spots. They then
validated their proposed framework on real-world data with
a success rate of 92%.

Latent state inference plays an important role in au-
tonomous driving. Knowing surrounding vehicles’ intent to
yield or not is crucial for ego vehicle’s planning and control.
The drivers’ behavior or intention on other vehicles can be
estimated by reasoning their underlying driving styles. A
supervised learning approach for inferring the latent states
of other vehicles in a T-intersection was proposed in [17].
They also adopted graph neural networks to model relational
information of the neighboring vehicles. However, they as-
sumed that the ego vehicle has access to the latent states of
the other traffic participants during training which may not
be a realistic assumption.

In this work, we propose Lane-keeping, Lane-changing
with Latent-state Inference, and Safety Controller (L3IS)
agent to fill the technical gaps mentioned above. The L3IS
agent helps the ego vehicle make both acceleration and lane-
changing decisions in highway on-ramp merging scenarios.
It consists of multiple components to improve driving safety
in practical scenarios. These components are as follows.

1) Lane-keeping (LK) agent: A proximal policy op-
timization (PPO) based deep RL agent for making
acceleration changes.

2) Lane-changing (LC) agent: A deep Q-network
(DQN) based agent for performing lane changes.

3) Supervised-learning (SL) agent: This agent is de-
signed to predict the driving style of the surrounding
vehicles.

4) Safety controller: To ensure the safety of the above
learning-based controllers, a safety controller is de-
ployed with a one-step look-ahead of the LC and LK
agent actions.

In contrast to [17], we do not assume the LK and LC
agents have access to the surrounding vehicles’ driving styles
during training. Finally, the augmented L3IS (AL3IS) agent
is proposed as an extension of L3IS, which is shown to be
effective when there exist V2V communication delays.

The main contributions of our work are:

• A principled way of learning and planning is proposed
for performing lane-keeping and lane-changing actions
that is capable of dealing with a variable number of
surrounding vehicles.

• A systematic approach to addressing V2V communica-
tion delays is proposed using augmented states.

• Extensive simulations generated from real-world traffic
data are constructed to evaluate the performance of L3IS
and AL3IS agents against state-of-the-art baselines.

II. PRELIMINARIES

A. Partially Observable Markov Decision Process
In a Markov decision process (MDP), an agent will choose

an action at at time step t based on its current state st. Then,
it will receive the reward of rt, and the environment evolves
to the state st+1 probabilistically [18]. This process can be
represented by a tuple of (S,A, T,R, γ), where S is the state
space; A is the action space; T : S × A × S → R is the
transition model; R : S × A → R is the reward model; and
γ is the discount factor.

When an agent state is uncertain, partially observable
MDP (POMDP) which is an extension of MDP can be used
for modeling. In this formulation an additional mapping
function Ω : O → s that maps an observation to a state
will be needed [19]. The objective of this problem is to find
a mapping from an observation to a probability distribution
over actions π : O → P(A) that maximizes the expected
return:

π∗ = argmax
π

E
∞∑
t=0

γtR(st, at) (1)

B. Policy Improvement
In RL, several methods have been proposed for policy

improvement through interaction with an environment [20].
In this study, we will use Deep Q-network [21] and Proximal
Policy Optimization [22] for making acceleration and lane
change decisions respectively.

1) Deep Q-network (DQN): The objective of DQN is to
iteratively update the Q-function using the Bellman equation:

Q(s, a)← (1− α)Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)

)
(2)

Here, Q(s, a) denotes the current estimate of the Q-value
for state s and action a, α is the learning rate, and r is the
immediate reward. The Q-network is trained to minimize the
loss function:

L(θ) = E
[(

r + γmax
a′

Q(s′, a′; θ−)−Q(s, a; θ)
)2

]
(3)

Here, θ represents the neural network parameters, and θ−

represents the parameters of a target network, periodically
updated with the current Q-network parameters. The expec-
tation is taken over a minibatch of transitions (s, a, r, s′)
sampled from a replay buffer.

2) Proximal Policy Optimization (PPO): This algorithm
introduces a clipped surrogate objective function to ensure
limited policy updates. The objective function, denoted as
L(θ), is defined as:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât],
(4)

where epsilon is a hyperparameter, rt(θ) represents the ratio
of the new policy to the old policy rt(θ) =

πθ(at|st)
πθold

(at|st) , Ât

is the advantage estimate at time t. The motivation for this
objective function is to limit the policy update amount at
each time step. To ensure proper state space exploration, a
noise process is added to the actor’s chosen action:

µ′(st) = µ(st|θµt ) +N (5)



In all of the aforementioned equations st will be estimated
using Ω mapping function in a POMDP setting.

III. METHOD

A. Latent State Inference with Supervised Learning Agent

As discussed in the introduction section, assuming that the
ego vehicle has access to the surrounding vehicles’ driving
style is impractical. However, it is possible to leverage a
supervised learning (SL) approach to infer the driving intent
based on state information shared by V2V communication.
Here, the task is to estimate P (zit|oi) where zit is the latent
state (driving style or intent) of the driver of vehicle i at time
step t [17].

For training the SL agent, all vehicle trajectories will be
generated by performing a fixed number of simulations with
true labels. In these simulations, to ensure the diversity of the
generated training data, the ego vehicle employs a random
policy. Then a multi-layer perception (MLP) classifier will
be trained to minimize the following negative log-likelihood
loss function.

L(θ) = Ezi
t,ot

[logPθ(z
i
t)|ot] (6)

The learning framework for the SL agent is represented in
Fig 2.

Fig. 2: The supervised learning (SL) agent training frame-
work. A random policy will interact with the environment to
generate training data. Here, dt is the true driving style or
latent state of the surrounding vehicles. Then, a classifier will
be trained using the generated data to estimate surrounding
vehicles’ driving style d̂t.

B. RL with Augmented MDP

Dedicated short range communication (DSRC) is a V2V
protocol used in autonomous vehicles for transmitting data
[23]. This type of communication will help the vehicles to
have access to information that is not easily computable by

using onboard sensors. For the on-ramp merging scenario,
vehicles already in the mainstream can communicate with
the vehicles entering the highway using the V2V commu-
nication protocol. However, the assumption of perfectness
for this type of communication is impractical for real-world
scenarios. The effects of V2V communication delay are
studied in [24]. They claimed that in the worst case of 50%
communication loss, 5 out of 10 messages will be received
which will result in an average delay of 300ms.

Regardless of the amount of delay, we can consider this
as a learning problem in environments with constant delayed
feedback. This problem is represented as a constant delayed
MDP (CDMDP) with a 6-tuple (S,A, T,R, γ, k), where k is
a non-negative integer that describes the number of time-step
differences between when an agent reaches a state and the
time it receives its information [25].

To further facilitate the learning process, it is possible to
leverage the action history for estimating the agent’s current
state and then using this estimated state for developing a
policy. By this approach, a policy can be formed by using
Ik ∈ S × Ak, the last observed state, and the k following
actions [26].

For solving CDMPD, we will use an augmented MDP, in
which a planning algorithm will be found for a larger state
S × Ak. The goal of this approach is to find optimal state
values for this larger state space (V ∗

Ik
) [27]. This solution

can tackle the packet loss problem in V2V communication
which causes observation delay. An augmented state will be
constructed that consists of the state of the agent in the past
k time steps st−k and the k following actions at−k:t. For
constructing st−k, the trained SL agent will be used for the
estimation of the latent state.

In this study, we are dealing with constant delayed
POMDP (CDPOMDP) as the driving styles of surrounding
vehicles are latent. Most of the solution approach stays the
same as CDMDP except we have to estimate the agent’s
last observed state Ŝ and then augment it with the following
actions. The framework of CDMDP policy optimization is
represented in Fig. 3. Unlike [17], we will not assume the
ego vehicle has access to the latent states during training
time. This assumption lacks practicality in real-world sce-
narios, where the driving styles of surrounding vehicles are
consistently unknown to the ego vehicle.

IV. PROBLEM FORMULATION AND SOLUTION

The on-ramp merging scenario is framed as a POMDP
which is then extended to a CDPOMDP for the AL3IS agent.
The highway consists of a five-lane mainstream and an on-
ramp. The surrounding vehicles on the mainstream have two
different “aggressive” and “cooperative” driving styles, and
all of them are run by Intelligent Driver Model (IDM) [28]
provided by the SUMO simulator [29]. The vehicle that is
being merged is under our control and is called the ego
vehicle. A schematic of this scenario outlining the overall
architecture is shown in Fig. 4.
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Fig. 3: Policy optimization framework. Common modules in black are shared by both L3IS and AL3IS agents. L3IS: Given
an observation from the environment, SL agent will estimate the surrounding vehicles’ driving styles. Then, the estimated
latent state will be constructed and used as an input for both LK and LC agents. Finally, the agent’s actions will be monitored
and corrected if needed by the safety controller module. AL3IS: Delayed observation and estimated driving style will be
augmented with the following actions and will adhere to the same process as the L3IS agent.

Fig. 4: Highway merging scenario. The ego vehicle has
access to the information of its surrounding vehicles (except
for their driving style) within a certain radius centered at the
ego.

A. POMDP Formulation

1) State: The environment state consists of the position
and velocity of the ego vehicle and all of its surround-
ing vehicles within a certain radius centered at the ego
vehicle.

s = (s1, s2, ..., si, 0, ..., se, ..., 0, sj , ..., sn), (7)

where se = (xe, ye, ve) is the state of the ego ve-
hicle, and si = (xi, yi, vi, d) the i-th surrounding
vehicles in which d represents the driving style. All
surrounding vehicles’ states are sorted firstly based
on their lane number and then by their distance from
the ego vehicle. The states of the vehicles behind the
ego (s1, s2, ..., si, 0, ...) will be sorted based on the
mentioned criteria, zero-padded, and then put behind
se. The same process is done for vehicles in front of
the ego. Zero-padding is done to deal with a variable
number of vehicles as demonstrated in Fig. 4.

2) Action: The environment is discretized into time steps
of length ∆t. In each time step, the ego vehicle will
choose an acceleration between (−amin, amax) m/s2



and whether to perform lane change or not.
3) Transition Model: After an action is taken, all of the

vehicles’ positions and velocities will be updated by
the SUMO simulator.

4) Reward Model: To ensure safety, smoothness, and fuel
efficiency, penalties are added for unsafe lane changes,
speed changes, and collisions. The reward function for
the LK agent is:

rlk = αlkrsc + βlkrc + γlkra, (8)

where αlk, βlk, and γlk are hyperparamters. The re-
wards rsc, rc, and ra represent the penalties for speed
change, collision, and the reward of arriving at the
end of the highway respectfully which are defined as
follows.

rsc = −|at|, (9)
rc = −p, (10)
ra = q. (11)

The reward function for the LC agent only considers
safe maneuvers.

rlc = αlcr
′
c + βlcr

′
a, (12)

where

r′c = −p′, (13)
r′a = q′. (14)

A feedback of the reward functions for LK and LC
agents will be used to optimize their policies.

5) Observation Model: For the L3IS agent, the observa-
tion model is the same as the state model. However,
as discussed in the previous sections, it is impractical
to assume the information between vehicles will be
transmitted instantly and without any delay. Therefore,
for the AL3IS agent, a constant delayed observation
model is assumed:

ot = st−k, (15)

where k denotes the observation delay.

B. Solution Algorithms and Network Architecture

The LK agent utilizes a PPO framework for its operations.
Its actor and critic networks each comprise two hidden layers,
with sizes of 128 and 64, respectively. Given the discrete
nature of the LC agent’s action space, a straightforward DQN
serves its purpose effectively. This DQN features a single
hidden layer with a size of 128.

C. Safety Controller Mechanism

Although deep RL shows a great performance in solving
complex high dimensional problems, it is not sufficient to
only rely on it for achieving safety [30]. We built a higher-
level safety controller that monitors and corrects both LK
and LC actions based on a one-step look-ahead kinematics.

1) LK Action Constraint: For ensuring safe acceleration
changes, the ego and its target vehicle should maintain a safe
distance. A constant speed is assumed for calculating the
target vehicle’s position and the ego vehicle’s acceleration
is known. Then, the acceleration will be corrected by the
following formula:

asafe
e =

{
amin if x′

e − x′
t ≤ dsafe

ae otherwise.,
(16)

where

x′
t = vt + xt (17)

x′
e =

1

2
ae + ve + xe (18)

Here, dsafe is the minimum safe distance, t and e are the
subscripts for the target and ego vehicle respectively.

2) LC Action Constraint: To ensure safety in LC deci-
sions, the same procedure is done for monitoring LC actions.
The safety controller will judge the safety of LC actions
and will terminate the action if it leads to unsafe states. By
termination action, the ego vehicle will stay in the auxiliary
lane for the next time step. The safety constraints are the
same as LK except here both rear and front vehicles should
have a safe distance from the ego after lane-changing. If
lane-changing action is suppressed, the safety controller will
change acceleration to amin to allow the ego vehicle to have
the desired safe distance.

V. EXPERIMENTS

A. Environment Setup

All of the simulations are performed in the SUMO simula-
tor. The simulation parameters are listed in Table. I. For the
mainstream, vehicle flow rates and their desired maximum
speed are obtained from the NGSIM US Highway 101
dataset [31]. The minimum headway (τ ) of the aggressive
and cooperative drivers is sampled from a uniform distribu-
tion between (0.1, 0.7) and (0.6, 0.8) respectively. All of the
safety regulations for aggressive drivers are turned off in the
SUMO setting to ensure their risky driving style. It should
be emphasized that the safety regulations for the ego vehicle
are also suppressed as our algorithm is completely in charge
of controlling its actions. Each episode starts with inserting
the surrounding vehicles with an aggressiveness probability
of Pcooperative = 0.5. After 20 seconds the ego vehicle will
be inserted. An episode will be finished if the ego vehicle
exits the highway, encounters a collision, or the maximum
allowed time steps have been passed.

B. Supervised Learning (SL) Agent Training

For training the SL agent, an agent with a random policy
interacts with the environment for 1,000 episodes and the
data for observations and true latent states is gathered using
the framework described in Section III-A. The reason for
using a random policy in data generation was to avoid
generating biased data for training.

After data generation, a neural network is trained for more
than 5,000 epochs to estimate the driving style of the vars
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TABLE I: Experimental parameters

Vehicular Parameters

Vehicle type passenger

Car following model IDM

Length 5 m

aggressive: (10, 13) m s−1

Max speed cooperative: (8, 11) m s−1

second lane: 12.21 m s−1

Min gap 2.5 ms−1

aggressive: (0.1, 0.7) s
τ cooperative: (0.6, 1.8) s

second lane: 1 s

amax accel 2.6 m/s2

bmax decel 4.5 m/s2

be emergency decel 9 m/s2

Simulation Paramters

Traffic demand

1st lane: 1,512 veh/hr

2nd lane: 1,692 veh/hr

3rd lane: 1,656 veh/hr

4th lane: 1,584 veh/hr

5th lane: 1,656 veh/hr

Main lane length 150 m

Merge lane length 80 m

Simulation time step 0.1 s

given the true targets. The test accuracy of the trained model
is 96.34%. The learning curve of the SL agent is represented
in Fig. 5.

C. L3IS Agent Training and Analysis

After training the SL agent, the driving style of the
surrounding vehicles will be inferred using the trained agent.
Apart from the SL agent, a safety controller is added to the
L3IS agent to ensure safe maneuvers both for lane-keeping
and lane-changing. For the baseline, we used a combination
of LK and LC agents without latent state inference and safety
controller. We also did an ablation study to evaluate the
importance of the SL agent and the safety controller. All
agents were trained for 360,000 steps and then tested for
1,000 episodes. The training and test results are represented
in Fig. 6 and Table. II. It is apparent that L3IS significantly
outperforms the baseline approach. It deserves mentioning
that its collision rate is 0% and the reason for an incomplete
success rate is the agent did not merge to the mainstream in
a few episodes within the maximum allowed time steps.

TABLE II: Success rate and average reward analysis of L3IS.

Algorithm Success rate Average reward

Baseline 90.88± 0.59% 16.46± 0.29

L3IS 99.90± 0.17% 18.58± 0.16

Fig. 5: Supervised Learning (SL) agent training loss.

Fig. 6: Performance of L3IS with and without safety con-
troller against baseline.

D. Observation Delay and Sensitivity Analysis

To evaluate the performance of the AL3IS agent, we per-
formed several simulations with varying observation delays.
The delays range from 1, 2, 3, 10, and 15 seconds. The agent
is trained under the same circumstances as L3IS. The results
are represented in Fig. 7 and Table. III. As we can see, the
collision rate increases significantly in the delays of more
than 1 second. We believe the main reason for this is the
safety controller no longer has access to the most recent
observation and it does not have any mechanism for dealing
with this situation. So it will lose its functionality under high
delay amounts. Handling observation delays in the safety
controller is left for future work. It is worth noting that the
delay amount is 300ms in the worst case in which AL3IS
shows an acceptable performance with only a 6.06% less
success rate on average compared to L3IS with instant obser-
vation. A back-of-envelope calculation offers further insight
into the challenge posed by observation delays in dense

huangz
Sticky Note
Do  these parameters you select? or Are they determined by simulation runs? If they are selected, the demand is usually determined by the link level, not lane level.

huangz
Sticky Note
Since the BSMs' frequency is 10 times/second, over 1 second delay considered as significant delays. The delay in the field is usually less than 0.1 second. So, we should emphasize the proposed algorithm has a very good performance even the delay is significant (i.e., 1 second). It highlights the stability of the proposed algorithm. 



traffic scenarios. For instance, based on our analysis of US
Highway 101 data, where the average car speed is 12m s−1,
a 1-second delay results in a positional change of 12 meters
for each vehicle. This means that for a t-second delay, the
positional shift becomes 12t meters, presenting significant
hurdles for collision avoidance algorithms, particularly in
dense traffic environments. To gain deeper insight into the
significance of AL3IS, we conducted identical simulations
employing the L3IS agent. The optimal performance of the
L3IS agent is under the 2-second delay scenario, which is
notably inferior to that of the AL3IS agent.

Fig. 7: AL3IS agent observation delay sensitivity analysis.

VI. CONCLUSION

In this paper, we proposed the L3IS agent for autonomous
on-ramp merging in highway traffic scenarios. We demon-
strated that the incorporation of latent state inferring and
safety controllers significantly improves the success rate and
overall performance of the merging maneuver. By using a
combination of RL and supervised learning, our agent can
accurately predict the driving style of surrounding vehicles,
enabling it to make informed decisions even in the absence
of complete information. Additionally, we extended the L3IS
agent to account for observation delays, presenting the
AL3IS agent. Our experiments showed that AL3IS maintains
a high success rate even with delays of up to 1 second which
was more than triple the amount of a worse-case delay in
practical scenarios showcasing its robustness in real-world
scenarios where communication latency is inevitable.

Overall, our work contributes to the advancement of
autonomous driving systems in a connected vehicle setting,
particularly in highway merging scenarios, by providing a
principled approach that enhances safety, efficiency, and
adaptability. Future research could focus on further improv-
ing the safety controller to handle communication packet loss
and exploring additional factors such as adversarial driving
intents and unseen driving styles to enhance the agent’s
robustness and generalization capabilities. Additionally, inte-
grating real-world experimentation and validation would be

essential steps toward deploying these techniques in practical
autonomous vehicles.
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