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Abstract—Mobile networks are swiftly advancing to accommo-
date the burgeoning spectrum of applications. The architecture of
5G networks integrates the principle of network slices, logically
isolated end-to-end segments tailored to offer specific services. In
this architectural schema, drones have emerged as a significant
service category. Achieving the successful deployment of drone
networks is heavily contingent upon the ability to accurately lo-
calize them in a three-dimensional (3D) setting, beyond the critical
requirement for tight latency control. Transitioning from 4G to
5G, these networks are characterized by their operation at ele-
vated frequency spectrums and more densely packed deployment
configurations. Within such environments, the task of ensuring
precise indoor localization poses a significant challenge, primarily
due to the distinctive signal behavior at higher frequencies. To
achieve this goal, we propose the RAPID framework, utilizing
foundational principles from the third-generation partnership
project (3GPP) to design a radio access network (RAN) that
includes 5G femtocells. This architecture aims to shift positioning
responsibilities from outdoor base stations (BSs) to improve indoor
localization performance. Our study’s principal contribution is the
demonstration of how the spatial distribution of 5G femtocells
significantly influences the accuracy of drone positioning. To
address the challenges inherent in femtocell deployment, we
develop an innovative optimization framework coupled with a deep
reinforcement learning (DRL) strategy, aimed at solving the NP-
hard problem. Our findings reveal that adopting our DRL-based
placement strategy significantly improves positioning accuracy
compared to regular arbitrary deployment approaches.

Index Terms—indoor positioning, autonomous vehicles, drone,
5G femtocell, GDOP, optimal placement, RL

I. INTRODUCTION

The next generation of mobile networks is set to provide
services to a wide array of sectors, each with unique quality
of service (QoS) demands. To meet these demands, these next
generation networks will employ a heterogeneous radio access
network (RAN) architecture. This RAN integrates multiple
radio access technologies (RATs) defined by the 3rd Generation
Partnership Project (3GPP), facilitating wireless connectivity
across diverse environments.

In this ecosystem, the communication between autonomous
vehicles (AVs) assumes critical importance. A prime example
of this is the interaction between unmanned aerial vehicles
(UAVs), commonly known as drones, and their ground con-
trollers, which has surfaced as a significant use case drawing
substantial interest. Leading corporations, such as Amazon
and Google, are seeking to create a navigation network that
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Figure 1: Overview of the RAPID framework, showing the shift
of localization responsibilities from the 5G base stations to the
5G femtocells, facilitating a seamless transition from outdoor
to indoor environments

encompasses both indoor and outdoor settings, alongside urban
and rural territories. Within this framework, the attainment of
precise localization emerges as a fundamental necessity [1].

The Global Positioning System (GPS) is widely acknowl-
edged for providing accurate location information in outdoor
environments. Yet, its effectiveness diminishes significantly
within indoor spaces, often resulting in service disruptions. In
traditional Long-Term Evolution (LTE) networks, the position-
ing accuracy reported falls substantially short of that offered
by GPS. Nonetheless, both cellular and GPS technologies face
obstacles in maintaining coverage and accuracy indoors.

The widespread implementation of diverse 3GPP RAN ar-
chitectures in 5G has enabled uninterrupted communication
for 5G-compatible UAVs, ensuring reliable coverage and re-
markable data transfer rates in outdoor scenarios. However,
achieving a comprehensive solution that offers precise and
dependable localization for drones in both indoor and outdoor
settings continues to be a formidable challenge. To address this
and enhance indoor coverage, we advocate for the adoption of
5G femtocells for indoor localization, as shown in Figure 1.
This strategy ensures that drones experience consistent and
reliable positioning throughout their interaction.

The accuracy of indoor positioning is influenced by both the
ranging error and errors caused by relative spatial geometric
configurations. For example, when the ranging error is kept to
10 cm or less, a target achievable with the extensive bandwidth
of 5G mm-Wave technology, the geometric dilution of precision
(GDOP) at a given location is found to be 20. This results in an
ultimate localization error of approximately 2 m, calculated as
10 cm × 20 = 200 cm. This twentyfold increase in error, from



10 cm to 2 m, is deemed unsuitable for applications requiring
high precision in positioning, such as the intricate localization
needs of drones.

Our goal is to examine the impact of GDOP and to de-
vise optimal configurations for positioning beacons, which are
essentially 5G femtocells. Whereas existing studies [2]–[4]
have largely focused on mitigating ranging errors to improve
localization accuracy, our methodology includes an analysis
of the spatial geometric configuration of the system, a crucial
element overlooked in previous studies.

To that end, we propose RAPID: Reinforcement Learning-
Aided Femtocell Placement for Indoor Drone Localization,
a framework for high-accuracy localization of indoor drones
leveraging 5G femtocells that are configured via deep reinforce-
ment learning (DRL) approaches. We compute the Cramer-Rao
lower bound (CRLB) for the position estimator. This calculation
reveals that the localization error in round-trip time (RTT)
trilateration methods stems from both ranging errors and the
spatial location of the drone relative to the positioning nodes.
Our primary objective is to offer femtocell configurations for
any indoor setting that minimize the latter source of error to
facilitate precise localization. Towards this goal, we introduce
an innovative optimization formulation and employ a DRL
strategy to identify desired 5G femtocell configurations.

DRL has played a significant role in addressing various
sequential decision-making and control challenges, such as
gaming, robotic manipulation, optimizing chemical reactions,
and aviation [5], [6]. The majority of conventional DRL
research focuses on creating agents capable of learning to
tackle sequential decision problems arising from the intrinsic
dynamics of a task, like the differential equations governing the
cart-pole task in the classic control suite [6].

In the case of combinatorial optimization problems, nu-
merous conventional approaches rely on employing manually
devised heuristics, which systematically build a solution. These
heuristics are typically crafted by domain experts but can
frequently be suboptimal due to the inherent complexity of
the problems. The majority of the current literature for the
optimal placement of positioning nodes is based on heuristic
approaches [7]. On the other hand, DRL offers a promising
alternative for automating the exploration of these heuristics
by training an agent through supervised or self-supervised
methods [8]. To that end, RAPID proposes a novel approach to
find the optimal placement of 5G femtocells using an innovative
DRL-based method, outperforming the existing literature.

Our experimental validation indicates that, even under con-
ditions of minimal ranging errors, suboptimal GDOP can
markedly compromise the final localization accuracy of drones
in a three-dimensional (3D) environment. By utilizing coverage
heatmaps, we demonstrate that GDOP arises from both vertical
and horizontal dilutions of precision, known as VDOP and
HDOP, respectively; with vertical dilution having a more pro-
nounced impact on the overall reduction of estimation accuracy
than horizontal dilution.

Our contributions can be succinctly outlined as follows:
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Figure 2: An overview of a combined RAT 5G network offering
both indoor and outdoor coverage with a unified core network

• The introduction of an integrated localization system that
harmonizes outdoor 5G base stations (BSs) with indoor 5G
femtocells, all cohesively linked to a central localization
unit within the 5G core network.

• The derivation of the positioning error bound (PEB) for an
RTT-based trilateration system, attributing the final error
to both ranging inaccuracies and geometry-induced errors.

• The investigation into the effects of VDOP and HDOP,
revealing that VDOP poses a greater source of error
compared to HDOP on the overall localization accuracy.

• The proposal of a principled DRL-based learning approach
to solve the NP-hard problem of 5G femtocell placement
in indoor settings.

• The comparison of the proposed DRL-based approach
with random placement patterns to demonstrate the su-
perior GDOP of RAPID. According to our results, RAPID
yields a significant decrease in the GDOP error, thereby
significantly improving the overall localization estimation.

II. RAPID CORE NETWORK MODEL

Within a 5G network, maintaining continuous tracking of
localization data is crucial, especially in situations where User
Equipment (UE) has high mobility. To address this, the model
in Figure 2 aims to create a centralized core network repository
designed to keep accurate tabs on the location information of
specific UEs across their entire connectivity span within a di-
verse 5G infrastructure, encompassing both outdoor and indoor
nodes. This strategy ensures that regardless of the UE’s mobility
or the complexity of the network environment, its location can
be accurately and consistently monitored, facilitating seamless
service delivery and enhanced user experiences.

The scenario in Figure 2 illustrates an integrated setup
encompassing both macro and micro BSs, specifically tailored
for outdoor coverage using the 5G New Radio (NR) technology,
as standardized by the 3GPP. In parallel, indoor connectivity is
secured through the deployment of 5G femtocells. A pivotal
element of this system is the centralized Location Management
Function (LMF) within the core network, which is tasked with



the integration and processing of localization data originating
from both the outdoor 5G NR infrastructure and the indoor
femtocells. This unified approach to location management en-
sures that there is a cohesive and accurate tracking mechanism
in place, capable of localizing a drone as it moves between the
indoor and outdoor RAN. This architecture not only facilitates
seamless connectivity across different environments but also
significantly enhances the efficiency and reliability of services
that depend on precise location information, such as navigation
and logistics applications.

In this setup, a drone moves between outdoor and indoor
coverage, keeping its location accurate indoors with femtocells
and outdoors with BSs. This approach aligns with ongoing
standards, allowing the Location Management Function (LMF)
API to remain unchanged for streamlined operation.

In the following sections, we explore the challenges related
to indoor localization accuracy. We base our analysis on the
premise of a consistent outdoor cellular environment, predom-
inantly utilizing 5G NR nodes for positioning purposes.

III. RAPID POSITIONING

This section begins by outlining the essential prerequisites
for localization. It then proceeds to describe how RAPID
facilitates real-time, precise location tracking for drones via
RTT-based trilateration. The final part provides the derivation
of the positioning error bound (PEB) for RAPID and highlights
the influence of GDOP on the overall localization error.

A. Foundational Prerequisites for Localization

Recent studies have explored the anchor placement opti-
mization to enhance indoor localization [9]–[13]. This research
primarily focuses on determining the ideal number of anchors
needed for comprehensive indoor coverage and optimizing their
positions to minimize errors due to spatial relationships. The
choice of sensors significantly affects coverage due to their
varying capabilities. For instance, systems employing low-
power Bluetooth sensors offer omnidirectional transmission
limited by range and physical barriers. In contrast, systems
utilizing ultrasound sensors face restrictions based on the sen-
sor’s beam angle, influencing the sensor count and placement
strategy [14]. Once the requisite number of anchors is estab-
lished, an optimization algorithm can be applied to ascertain
their optimal locations, thereby reducing localization errors
stemming from geometric considerations.

Our main focus is on localization methods that utilize
ranging-based strategies [15]. These techniques involve using
transmit/receive signals between a target and one or more
positioning nodes to frame the localization issue.

The signals employed in these localization techniques may
either be acoustic [4] or Radio Frequency (RF) [16], contingent
upon the type of transceivers used. Acoustic (or ultrasound)
signals, due to their slower propagation speed, are capable of
delivering high-precision location estimates [12]. While they
excel in closely-spaced, high-accuracy gesture tracking scenar-
ios [15], their effectiveness diminishes over longer distances

due to limited coverage, rendering them less appropriate for
extensive range indoor/outdoor localization tasks.

Beyond signal type, the efficacy of a localization system
hinges on measurement techniques such as Received Signal
Strength (RSS), Time of Arrival (TOA), or Angle of Arrival
(AOA). RSS, commonly paired with environmental fingerprint-
ing, offers a cost-effective and straightforward implementation.
However, localization strategies relying on RSS fingerprinting
are notably susceptible to dynamic environmental variations,
compromising their reliability.

AOA estimation, employing angulation for localization, ne-
cessitates specialized antenna arrays [17]. This approach de-
mands significant computational resources, requiring additional
processing power allocation. The complexity arises from the
use of sophisticated algorithms, such as Multiple Signal Clas-
sification (MUSIC), essential for accurate angle estimation.

In contrast to RSS and AOA, Time of Arrival (TOA) of-
fers a simpler and more dependable measurement alternative,
requiring neither high computational resources nor specialized
antenna setups [18]. TOA estimates are derived by converting
time measurements into distances using d = c × t, where d
represents the distance between the transmitter and receiver,
c is the propagation speed of the signal (the speed of light
for RF signals), and t is the duration RF waves take to reach
the receiver from the transmitter. Utilizing distance data from
several anchor nodes to the target allows for the application of
trilateration methods to determine the precise location.

B. RTT-based Trilateration

In 5G localization, two primary techniques are commonly
employed: Time Difference of Arrival (TDOA) and RTT-based
methods. While both techniques alleviate the stringent synchro-
nization requirements between the UE and positioning nodes,
research presented in [19] demonstrates that RTT-based meth-
ods offer superior ranging accuracy, as validated through CRLB
derivations. In our setup, we utilize TOA measurements derived
from RTT for acquiring distance measurements between 5G
femtocells and drones, enabling 3D localization. Trilateration
necessitates a minimum of three anchors for two-dimensional
(2D) localization and at least four for 3D localization.

Consider the distance between the drone and the i-th 5G
femtocell, denoted as di. Let the drone’s position be represented
by [x y z]T , and the position of the i-th 5G femtocell be denoted
as [xi yi zi]

T . The trilateration problem can be formulated as
(xi − x)2 + (yi − y)2 + (zi − z)2 = d2i , where i ∈ {1, · · · , n}
for a setup with n number of 5G femtocells. With further
mathematical manipulation, we can rewrite the problem as
Φθ = δ, where Φ and δ are equal to:

Φ =

 2(xn − x1) 2(yn − y1) 2(zn − z1)
...

...
...

2(xn − xn−1) 2(yn − yn−1) 2(zn − zn−1)

 ,

δ =

 d21 − d2n − x2
1 − y2

1 − z21 + x2
n + y2

n + z2n
...

d2n−1 − d2n − x2
n−1 − y2

n−1 − z2n−1 + x2
n + y2

n + z2n

 .



The vector θ = [x y z]T , containing the drone’s coordinates,
is expressed as: θ = (ΦTΦ)−1ΦT δ.

C. Positioning Error Bound

A valuable metric for evaluating localization accuracy is the
CRLB, representing the minimum achievable variance in lo-
cation estimation using an unbiased estimator. Assuming inde-
pendent range measurements with zero-mean additive Gaussian
noise and constant variance σ2

r [9], we can demonstrate that
for a 2D trilateration system with an unbiased estimator, the
CRLB variance of the positional error σ2(r) = σ2

x(r) + σ2
y(r)

at position r, is given by:

σ(r) = σr ×
√

NF∑NF−1
i=1

∑NF

j=i+1 Fij

,

where NF is the number of 5G femtocells, θi is the angle
between Fi and r, Fi is the i-th 5G femtocell, and Fij =
| sin(θi − θj)|.

Hence, we can infer that the localization error is proportional
to the product of the ranging measurement inaccuracies and a
function involving the number of 5G femtocells and the angle
between them and the drone. This function is known as GDOP,
defined as GDOP = σ(r)

σr
.

As CRLB is directly linked to GDOP, we can regard GDOP
as a reliable metric for assessing localization accuracy [13],
[20].

For the 3D localization of an object at coordinates (x, y, z)
utilizing 5G femtocells, the GDOP equation is given by:

GDOP =

√
V ar(x) + V ar(y) + V ar(z) + V ar(cτ)

σr
,

here, c represents the speed of light, and τ denotes the clock
offset of the receiver. We make the assumption that both the
transmitter and receiver share the same clock, thereby setting
the timing offset to zero. This simplification yields:

GDOP =

√
σ2
x + σ2

y + σ2
z

σ2
r

. (1)

Figure 3 illustrates the visual representation of GDOP for two
distinct scenarios. In the first case, depicted in Figure 3a,
the beacons are positioned more optimally compared to the
configuration shown in Figure 3b. Consequently, this disparity
in placement leads to varying location estimation errors, as
indicated by the respective shaded regions.

Let the position of the drone be denoted as (x, y, z) and
the position of each 5G femtocell as (xi, yi, zi). The distance
between them is given by:

ri =
√

(x− xi)2 + (y − yi)2 + (z − zi)2. (2)

Due to the ranging measurement error, the precise value of ri is
unknown, leading to inaccuracies when solving for (x, y, z) in
Eq.2. To establish a relationship between the solution error and
the actual ranging errors between the drone and the anchors,
we differentiate Eq.2 with respect to the variables, neglecting

(a) Beacon deployment with low
localization error

(b) Beacon deployment with high
localization error

Figure 3: Assessment of GDOP’s impact on localization error
resulting from varying beacon deployments

terms beyond the first order, as Massatt has done [21]. This
yields:

∆ri =
∆x(x− xi) + ∆y(y − yi) + ∆z(z − zi)√

(x− xi)2 + (y − yi)2 + (z − zi)2

= ∆x cosαi +∆y cosβi +∆z cos γi

where [cosαi cosβi cos γi]
T represents the unit vector point-

ing from the drone to the i-th 5G femtocell.
Let’s denote Θ = [∆x ∆y ∆z]T as the position error vector

and Ψ = [∆r1 · · ·∆rn]
T as the target range error vector. Then,

we can express the matrix Υ as follows:

Υ =

υ
1
1 υ1

2 υ1
3

...
...

...
υn
1 υn

2 υn
3


where [υi

1 υi
2 υi

3] = [cosαi cosβi cos γi]. With this, we can
express Ψ = ΥΘ, leading to Θ = (ΥTΥ)−1ΥTΨ. Given
that:

Cov(Θ) = E(ΘΘT ) =

 σ2
x σxy σxz

σyx σ2
y σyz

σzx σzy σ2
z

 . (3)

We assume Var(ri) = σ2
r and that the errors ∆ri are uncorre-

lated, then:

E(ΘΘT ) = E(((ΥTΥ)−1ΥTΨ)((ΥTΥ)−1ΥTΨ)T )

= (ΥTΥ)−1ΥTE(ΨΨT )((ΥTΥ)−1ΥT )T

= (ΥTΥ)−1ΥTΥ(ΥΥT )−1σ2
r = (ΥTΥ)−1σ2

r

By combining this outcome with Eq. 1 and Eq. 3, we
demonstrate that the diagonal elements of (ΥTΥ)−1 are
utilized in computing the GDOP, given by GDOP =√

HDOP 2 + V DOP 2. Here, HDOP characterizes the impact
of relative geometry on the X − Y plane, while VDOP
represents the influence of geometry on the estimation along
the Z-axis. Table I provides an assessment of the GDOP values.

It is crucial to emphasize our aim not only for a favorable
GDOP but also for maintaining accurate HDOP and VDOP
values concurrently. A scenario where HDOP is good while
VDOP is poor may yield precise estimation in the X−Y plane
(i.e., effective 2D localization) but may lead to inaccurate es-
timations along the Z-axis (i.e., inadequate height estimation).



Table I: Evaluation of GDOP Values
GDOP Values Evaluation of Femtocells Placement

1 Ideal
1− 2 Very Good
2− 5 Good
5− 10 Medium
10− 20 Sufficient
> 20 Bad

Much of the existing literature predominantly concentrates on
2D localization [9], [13], often overlooking the importance of
geometry and optimal anchor node placement. However, when
dealing with drones in a three-dimensional setting, ensuring
accurate estimations along the Z-axis becomes equally crucial
as those in the X − Y plane. Thus, we have underscored
the localization error sources in this section and introduced
concepts such as GDOP, HDOP, and VDOP to address these
considerations.

IV. RAPID PROBLEM FORMULATION FOR FEMTOCELL

DEPLOYMENT

Previously, localization techniques were primarily designed
for static targets in 2D scenarios, overlooking the real-world
geometric relationship between the target and anchors in three
dimensions. Consequently, determining the optimal placement
for a mobile target in a 3D space remains an unresolved
challenge [13]. Additionally, identifying the anchor placement
configuration for indoor localization to minimize the relative
geometric error between transmitters and the user at any
position is a recognized NP-hard problem [9]–[11], [13].

In this section, we introduce an optimization problem for-
mulation aimed at determining the optimal placement of 5G
femtocells to mitigate localization errors stemming from un-
favorable relative geometry. Subsequently, in the next section,
we introduce RAPID’s DRL-based technique and elucidate the
mechanism behind our framework to solve the problem.

The proposed algorithm must ensure high estimation accu-
racy for both the X − Y plane (horizontal) and the Z-axis
(vertical). It is worth noting that the Z-axis is particularly
susceptible to geometry-induced errors. Even if the overall
GDOP for a specific point is satisfactory, there is no assurance
that the VDOP matches the quality of the HDOP for that point.
This often leads to highly accurate estimations in the X − Y
plane but significantly erroneous estimations along the Z-axis.
To the best of our knowledge, we are the first to propose a
DRL-based algorithm aimed at enhancing estimation accuracy
in both the X − Y plane and the Z-axis.

The drone domain, denoted as set D, represents a subspace
within the indoor environment encompassing all potential tra-
jectories of the drone. Optimization computations are conducted
across all points within this domain to determine VDOP and
HDOP values for all the points. The 5G femtocells domain,
designated as set F, constitutes the permissible locations for
deploying the 5G femtocells, encompassing the entire ceiling. A
tolerance (htol) for HDOP is enforced as a constraint to ensure

that HDOP remains below a certain threshold for every single
point in set D, while a tolerance (vtol) for VDOP is imposed to
mandate that VDOP is also smaller than its required threshold.

Based on our findings in Sec. III-C, if each measurement is
uncorrelated and possesses identical uncertainty with zero mean
and unit variance, then HDOP and VDOP can be inferred from
the diagonal elements of the matrix Ω as illustrated below:

Ω = (ΥTΥ)−1 =

 σ2
x σxy σxz

σyx σ2
y σyz

σzx σzy σ2
z

 ,

where V DOP =
√
σ2
z and HDOP =

√
σ2
x + σ2

y .

Υ =


x1−x
r1

y1−y
r1

z1−z
r1

x2−x
r2

y2−y
r2

z2−z
r2

x3−x
r3

y3−y
r3

z3−z
r3

x4−x
r4

y4−y
r4

z4−z
r4

 .

The coordinates of the drone and the i-th 5G femtocell are
represented by (x, y, z) and (xi, yi, zi), respectively, where ri
denotes the distance between them.

Our primary objective is to determine the optimal placement
for a group of four 5G femtocells, aiming to minimize GDOP
for each point in set D while ensuring that HDOP and VDOP
associated with that point remain below specified thresholds.

The optimization formulation can be expressed as follows:

min
∑

D Trace{(ΥTΥ)−1}
s.t. ∀(x, y, z) ∈ D : HDOP (x, y, z) < htol; (4)
s.t. ∀(x, y, z) ∈ D : V DOP (x, y, z) < vtol.

The objective is to minimize GDOP (x, y, z) for any point in
the drone domain (∀(x, y, z) ∈ D) to optimize the placement
of 5G femtocells, thereby enhancing localization accuracy.
Simultaneously, to uphold low errors in 2D localization and Z-
axis estimation, we incorporate constraints for HDOP (x, y, z)
and V DOP (x, y, z), respectively.

V. RAPID FEMTOCELL DEPLOYMENT STRATEGY

RAPID proposes a DRL-based technique to reduce the nega-
tive impact of the geometry on overall positioning error. In this
section, we describe RAPID’s strategy for determining the 5G
femtocell placement. First in Sec. V-A, we briefly overview the
RL. Next, in Sec. V-B, we introduce a novel DRL formulation
designed to address the placement problem. Our goal is to
minimize the GDOP, while also ensuring that both the HDOP
and VDOP remain low. Lastly, in Sec. V-C we outline the
RAPID network architecture.

A. RL Foundamentals

1) Markov Decision Processes: In RL, an agent learns
to make decisions by interacting with an environment. This
interaction is typically modeled as a Markov decision process
(MDP), defined by a tuple (S,A,P,R, γ), where:

• S is the set of states representing the environment’s
possible configurations.



• A is the set of actions the agent can take.
• P(s′, r|s, a) is the transition probability function, giving

the probability of transitioning to state s′ and receiving
reward r when taking action a in state s.

• R(s, a, s′) is the reward function, defining the immediate
reward received upon transitioning from state s to state s′

by taking action a.
• γ ∈ [0, 1] is the discount factor, determining the impor-

tance of future rewards relative to immediate rewards.
The agent aims to learn a policy π(a|s) that maps states to

actions in a way that maximizes cumulative rewards over time
[22].

π∗ = argmax
π(a|s)

Eπ[

∞∑
k=0

γkRt+k+1|st = s],∀s ∈ S (5)

This is typically achieved through value-based methods, policy-
based methods, or a combination of both.

2) Deep Reinforcement Learning: DRL extends RL by uti-
lizing deep neural networks to approximate complex policies or
value functions. DRL algorithms leverage the representational
power of neural networks to handle high-dimensional state
spaces and complex decision-making processes.

3) Policy Gradient Methods: Policy gradient methods di-
rectly parameterize the policy π(a|s) and update its parameters
to maximize expected cumulative rewards. The objective func-
tion for policy optimization is given by:

J(θ) = Eτ∼πθ

[
T∑

t=0

γtrt

]
, (6)

where τ = (s0, a0, r0, . . . , sT , aT , rT ) is a trajectory sampled
from the policy πθ.

One of the well-established policy gradient methods is proxi-
mal policy optimization (PPO), a state-of-the-art policy gradient
method seeking to optimize the policy while ensuring stable and
efficient learning [23]. PPO maximizes an objective function
that penalizes large policy changes. The objective is given by:

max
θ

Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (7)

where rt(θ) = πθ(at|st)
πθold (at|st) is the ratio of new policy to old

policy, Ât is the advantage estimate, and ϵ is a hyperparameter
controlling the extent of policy updates.

B. RAPID MDP Formulation

The 5G femtocell placement is formulated as an MDP
problem. As illustrated in Figure 4, the problem begins with
an initial room dimension and the PPO agent will propose
a strategy for placing femtocells. Then the overall GDOP
value for the proposed configuration will be computed and the
environment will evolve to the next room dimension. The goal
is to find a configuration that has the minimum GDOP among
all possible points within a particular room dimension.

1) State: The environment state is the room dimension. In
this study, it is assumed that the height of the room is

fixed and its length and width will vary between a certain
range (ar, br).

s = (l, w, h) (8)

2) Action: The action space is a vector of length 12 that
represents the location of all femtocells.

a ∈ [p1, p2, p3, p4], (9)

where pi = [xi, yi, zi] is the location of the i-th femtocell.
It is worth mentioning that all of the locations are zero-
centered to enhance training effectiveness.

3) Transition Model: For training an agent capable of finding
the optimal femtocell placement for different room di-
mensions, the room dimensions should vary during train-
ing. Therefore, after an action is taken, the environment
will transit to another room dimension sampled from a
uniform distribution between ar and br. The height of all
rooms is considered the fixed value of cr;

L,W ∼ U(ar, br). (10)

It should be emphasized that this definition is unlike
traditional RL problems’ transition models as the state
transition is not dependent on the previous state or the
action taken.

4) Reward Function: To ensure having a low average GDOP
while keeping its value low in corner cases, the reward
function is defined as follows.

r =−
∑
i,j,k

√
αV DOP 2(a, pijk) + βHDOP 2(a, pijk)

− ζmax
pijk

V DOP (a, pijk)− δmax
pijk

HDOP (a, pijk),

(11)

where α, β, ζ, and δ are hyperparameters and pijk is the point
we are calculating its GDOP value. By this reward function, we
are penalizing the agent for creating strategies that have either
a high overall GDOP or a high maximum value for HDOP and
VDOP in the corner cases. Considering the continual mobility
of a drone, it is inadequate to calculate the GDOP, VDOP, and
HDOP for just one position. Thus, we assessed all potential
locations within the indoor space that the drone might traverse
and computed the cumulative rewards across these locations.
This enables us to derive the reward values for the entire 3D
area of interest.

C. RAPID Network Architecture

Here, we present the configuration and architecture details
of the PPO network of the RAPID utilized for femtocell
placement. Both the actor and critic networks have a similar
architecture consisting of three fully connected layers with
64 and 128 hidden units, respectively. The input dimension
matches the state space dimension. The output dimension in
actor network outputs the probability distribution over the
action space, while the critic network estimates the state-value
function. The hyperparameters of the PPO network are outlined
in Table II.
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Figure 4: An overview of the RAPID’s PPO learning framework
Table II: Hyperparameters of RAPID’s PPO network

Hyperparameter Value
Training Timesteps 40,000

Max Timesteps per Episode 20
Starting Std of Action Distribution 0.6

Decay Rate of Std 0.05
Update Frequency 80

Number of Policy Updates 80
ϵ (Epsilon Clip) 0.2

γ (Discount Factor) 0.99
Actor Learning Rate 0.0006
Critic Learning Rate 0.0005

VI. RESULTS & EVALUATIONS

In this section, we first present the experimental DRL setup
used for training RAPID and the simulation environment used
for evaluating the performance of the femtocell placement pat-
terns. Next, we utilize the optimal pattern obtained with RAPID
from our DRL setup and show how it improves localization
accuracy over random placement patterns.

RAPID’s DRL-based placement approach is trained using
an NVIDIA GeForce RTX 3090 GPU for 40,000 timesteps.
Each episode consists of 20 timesteps, with room dimensions
randomly sampled from a uniform distribution U(5, 15). The
room height is fixed at 4 m, and all the femtocells hung from
the ceiling have a height range of 3.5 m to 4 m. The training
average return of RAPID is depicted in Figure 5. As observed,
RAPID adeptly learns the underlying dynamics of GDOP
across diverse room dimensions and converges to a stable
average return within the allotted training timesteps.

After training, RAPID can now be tested with any given
indoor setup using custom room dimensions. To test the
performance of RAPID, we design a simulation setup using
MATLAB 2022a running on a Dell Optiplex 7080 computer.
Simulations are based on the deployment of four 5G femtocells.
The primary goal of these simulations is to show that after
RAPID is done with its training algorithm, it can provide the
optimal placement of 5G femtocells for any given indoor setup
in real time. Since this problem is inherently dependent on
the dimensions of the room, we show the performance results
on different dimensions to ensure that the proposed algorithm
works on any given setup.
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Figure 5: Training average return of RAPID’s PPO network

Table III: 5G femtocells deployment for different room sizes
with a random solution as a benchmark

Room Dimensions 5G-FC #1 5G-FC #2 5G-FC #3 5G-FC #4

Office Room
(5m × 5m × 4m) (4,1,3.9) (5,3,3.9) (3,1,3.6) (2,4,3.9)

Conference Room
(10m × 10m × 4m) (10,4,3.5) (9,6,3.7) (10,2,3.8,) (6,4,3.6)

Large Hall
(15m × 15m × 4m) (3,12,3.9) (14,2,3.6) (1,7,3.6) (13,1,3.5)

To assess RAPID’s effectiveness and adaptability, we test it
on three distinct floor plans, each representing different room
dimensions. The first scenario involves a typical office room
with dimensions of 5 m × 5 m × 4 m, considered as a
small space. The second scenario is that of a larger space, (e.g.,
conference room) measuring 10 m × 10 m × 4 m, considered
as a medium-sized space. Lastly, the algorithm is tested for an
edge case, (e.g., large hall) spanning 15 m × 15 m × 4 m.
These diverse tests showcase the algorithm’s versatility across
room dimensions ranging from moderate to exceedingly spa-
cious. We start with small to large to ensure that the RAPID
can deliver the same performance across all of them. Moreover,
in instances where the dimensions are extremely larger, such as
a storage venue measuring 25 m × 25 m × 4 m, where the
coverage range of 5G femtocells may fall short of spanning the
entire floor plan, the sole adjustment needed is the introduction
of additional 5G femtocells to meet the coverage demands, and
apply RAPID to find a location for installing the newly added
femtocell.

The non-optimized benchmark and the RAPID deployments
are listed in Table III and Table IV, respectively. Measurements
in both tables are given in meters.

Our goal is to demonstrate the xDOP values, including
HDOP, VDOP, and GDOP, in 3D spaces. We calculate the
average xDOP values for each (x, y) point across all z planes
and depict them with heat maps. This method simplifies the
spatial representation and enables visualization across all z
planes, not just a select few, yielding more thorough results.

To understand the specific effects on localization accuracy
between the X − Y plane and the Z-axis, we individually
present HDOP, VDOP, and GDOP. This approach allows us
to identify situations where a certain setup offers better hori-



Table IV: 5G femtocells deployment for different room sizes
with RAPID solution

Room Dimensions 5G-FC #1 5G-FC #2 5G-FC #3 5G-FC #4

Office Room
(5m × 5m × 4m) (0,5,3.5) (2,0,3.6) (2,3,4) (5,5,3.5)

Conference Room
(10m × 10m × 4m) (0,9,3.5) (5,0,3.6) (4,6,4) (10,10,3.5)

Large Hall
(15m × 15m × 4m) (0,13,3.5) (7,0,3.6) (7,9,4) (15,14,3.5)

(a)

(b)

Figure 6: xDOP representation for an office room and com-
parison between (a) RAPID’s optimal deployment as shown in
Table IV vs. (b) a random placement as shown in Table III

zontal accuracy but poorer vertical estimations, offering a more
detailed perspective on performance.

Figure 6 presents a comparison of xDOP values, analyzing
optimal solutions from RAPID against random placements, with
a focus on a smaller space, such as an office room. Similar
comparisons for larger spaces, including a conference room
and a large hall, are illustrated in Figure 7 and Figure 8,
respectively. These comparisons aim to assess RAPID’s efficacy
across various room sizes. As depicted in these figures, RAPID
demonstrates strong performance in all scenarios.

Additionally, these figures underscore the importance of
utilizing the RAPID framework for deploying 5G femtocells,
rather than relying on random placement strategies. This pref-
erence is justified by the substantial impact of GDOP values
on the system’s overall accuracy. To reduce the multiplicative
factor in the equation σ2

T (x, y, z) = GDOP · σ2
r , achieving

lower GDOP values is essential. By employing RAPID, we can

(a)

(b)

Figure 7: xDOPP representation for a conference room and
comparison between (a) RAPID’s optimal deployment as shown
in Table IV vs. (b) a random placement as shown in Table III

(a)

(b)

Figure 8: xDOPP representation for a large hall and comparison
between (a) RAPID’s optimal deployment as shown in Table IV
vs. (b) a random placement as shown in Table III
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Figure 9: CDF plots for xDOP values for various room dimen-
sions with the RAPID configurations shown in Table IV

successfully reach this objective.
Figure 9 illustrates the cumulative distribution function

(CDF) of xDOP values for optimal placements across three
different setups. This analysis aims to highlight the points
within the drone domain (set D) that exhibit xDOP values
beneath a specific threshold. The primary objective of the op-
timization was to ensure that the majority of points maintained
xDOP values under 20, a goal that was successfully met in
all examined scenarios. Moreover, the figure reveals that most
points actually display xDOP values below 15, surpassing initial
expectations. This indicates that, in the final 3D localization
process, the spatial configuration of the femtocells has a mini-
mal detrimental impact on overall accuracy.

For example, in the office room, GDOP values fall below 8,
while in the conference room, it’s 13, and in a large hall, it’s
15. All these values, being under 20, underscore the efficiency
of the RAPID framework.

To set a benchmark and underline the critical role of optimal
femtocell placement, we contrast the outcomes of random
placement with those of strategic deployment. Figure 10 show-
cases plots similar to those in Figure 9, but for randomly placed
femtocells. In these scenarios, the xDOP values escalate to
the thousands, a stark contrast to their sub-20 levels achieved
through optimal deployment. This significant increase suggests
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Figure 10: CDF plots for xDOP values for various room
dimensions with random configurations shown in Table III



that 3D localization accuracy becomes highly unreliable with-
out a placement strategy, as evidenced by xDOP values soaring.

For instance, consider a case where the same high-accuracy
ranging, with a σ2

r under 1 cm–achieved through substantial
effort and expense–is employed. Based on Figure 10, a random
arrangement could result in a final 3D localization accuracy
with a σ2

T around 10 m, rendering the precision efforts futile
and leading to an unacceptable localization accuracy far ex-
ceeding the desirable sub-meter precision. Conversely, based
on results seen in Figure 9, employing the RAPID framework
for femtocell deployment ensures the σ2

T for the overall 3D
localization accuracy remains around 10 cm. This represents
almost a thousandfold improvement in accuracy over random
placement. Such a comparison underscores the pivotal impact
of spatial geometry between the user and positioning nodes on
localization accuracy and the critical need for an algorithm like
RAPID that minimizes this error effectively.

VII. CONCLUSION AND FUTURE WORK

Conclusion. In this research, we explored the impact of
the geometric relationship between 5G-enabled drones and 5G
femtocells on the accuracy of indoor localization. To address
this, we introduced our framework, RAPID. We discovered that
localization errors stem from both range measurements and the
GDOP, with the latter having a more significant negative effect
on the Z-axis than on the X−Y plane. To enhance positioning
accuracy, we devised a DRL-aided framework to determine the
optimal placement of 5G femtocells. Our assessments showed
that our DRL methodology substantially improves estimation
along the Z-axis and overall GDOP.

Future Work. Using a small-scale 5G testbed, we have
conducted comprehensive measurements measurements for the
over-the-air performance of UEs [24] to establish a benchmark
for our real-life testing. In the future, we seek to integrate
RAPID into our existing testbed to create a proof-of-concept
that can demonstrate how the localization accuracy is improved
for a real-life UE.
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