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Abstract—We study the effects of topological connectivity and
wavelength conversion in circuit-switched all-optical wavelength-
routing networks. A blocking analysis of such networks is given.
We first propose an analytical framework for accurate analysis of
networks with arbitrary topology. We then introduce a model for
networks with a variable number of converters and analyze the
effect of wavelength converter density on blocking probability.
This framework is applied to three regular network topologies
that have varying levels of connectivity: the ring, the mesh-torus,
and the hypercube. The results show that either a relatively
small number of converters is sufficient for a certain level of
performance or that conversion does not offer a significant
advantage. The benefits of conversion are largely dependent on
the network load, the number of available wavelengths, and the
connectivity of the network. Finally, the tradeoff between physical
connectivity, wavelength conversion, and the number of available
wavelengths is studied through networks with random topologies.

I. INTRODUCTION

AVELENGTH-division multiplexing (WDM), used in
conjunction with wavelength-routing, is a promising
mechanism for information transport in future all-optical net-
works (AON’s) [1]-[3]. Unlike broadcast-and-select networks,
wavelength-routing networks offer the advantages of wave-
length reuse and scalability and are thus suitable for wide-area
networks (WAN’s) [4]. These networks consist of wavelength-
routing nodes interconnected by optical fibers. A wavelength-
routing node is one that is capable of switching a signal
dynamically, based on the input port and the wavelength on
which the signal arrives [5]-[7]. Such a node can be imple-
mented by a set of wavelength multiplexers and demultiplexers
and a set of photonic switches (one per wavelength).
We consider circuit-switched networks. Call requests arrive
at a node according to a random point process, and an optical
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circuit is established between the source and destination for
the (random) duration of the call. Two different functionalities
of the wavelength-routing nodes are important in this context:
nodes with no wavelength conversion capability and nodes
which can convert an incoming wavelength to an arbitrary
outgoing wavelength. When all nodes have wavelength con-
verters, the situation is analogous to trunk switching in digital
telephony [8], as a call arriving on one trunk (wavelength) can
be switched to any outgoing trunk, so long as one is available.
On the other hand, in a network without any wavelength
converting nodes, a call arriving at a certain wavelength on
an input fiber has to be switched to an output fiber at the
same wavelength. This requirement of wavelength continuity
increases the probability of call blocking; to honor a call
request, it is necessary that the same wavelength be free on
all the links of the circuit.

There has been considerable interest in obtaining the
call blocking performance of wavelength-routing networks
[9]-[11]. The performance improvement with wavelength
converters is of fundamental importance to quantify. This
improvement depends on the topology of the network, the
traffic demand, and the number of available wavelengths,
among other factors. As the network becomes denser, one
would expect the usefulness of converters to decrease, since
the paths get shorter. In the limiting case with a link between
every node pair, wavelength converters have no effect on the
blocking performance, since all sessions are one-hop sessions.!
On the other hand, a sparsely connected network tends not to
mix calls well and thus causes a load correlation in successive
links. This reduces the usefulness of wavelength converters
[9]. The benefits of conversion are thus largely dependent on
which of the above two effects dominates.

The analytical models proposed in the literature have con-
sidered networks in which there are no converters and those
in which all nodes have converters. All-optical wavelength
converters are being prototyped in research laboratories [12],
and are likely to remain costly devices. Therefore, a more
practical situation is one in which wavelength conversion
capability is available in a relatively small fraction of nodes.
We refer to such a network as one with sparse wavelength
conversion. In [13], a node architecture that can perform a
limited number of wavelength conversions is proposed, and
a heuristic algorithm for dynamic routing is presented for

I'This assumes that the direct link is always used in this case. If alternate
path routing is allowed, wavelength converters may still be of some benefit.
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reducing the number of conversions. In this paper, we consider
converters that can permute any set of incoming wavelengths
to any set of outgoing wavelengths, and develop a model to
analyze the effect of sparse wavelength conversion on the
blocking probability. Specifically, we address the following
question: For a given network topology, how many converters,
if any, are needed to achieve a desired performance? Our
analysis indicates that, in most cases, either a relatively small
fraction of the nodes has to be equipped with wavelength
conversion capability for good performance, or conversion
does not offer great advantages.

The literature on the blocking analysis of networks with
full or no wavelength conversion points out the difficulty in
accurate accounting of load correlation. In [10], a model to
compute the approximate blocking probability with Poisson
traffic input is presented. As pointed out in [10], that model is
inappropriate for networks with sparse topologies because it
does not consider the correlation of wavelength use between
successive links of a path. In [9], a new model that takes into
account this dependence is presented. However, it is assumed
that a wavelength is used on a link with a fixed probability
independently of the other wavelengths, and therefore, the dy-
namic nature of the traffic is hidden. Another model presented
in [11] considers Poisson input traffic and uses a Markov chain
model with state-dependent arrival rates. It is more accurate,
but the computation of blocking probabilities is very intensive,
and the analysis is tractable only for networks with a few
nodes.

In this paper, we present an analytical model of modest com-
plexity for evaluating the blocking performance of networks
with sparse wavelength conversion.> The model is shown to
be accurate for a variety of network topologies by comparing
the analytical results with those obtained using simulation. In
Section II, we present a model for computing the blocking
performance of networks without wavelength converters. The
model takes into account the correlation of wavelength use
on successive links. Section III extends this model to in-
corporate the effect of sparse wavelength conversion for an
arbitrary topological connectivity. We then study the blocking
performance of ring and mesh-torus networks as examples
of sparse topologies in Sections IV and V, respectively, and
the hypercube as an example of a dense topology in Section
VI. We notice that there is an excellent match between the
analytical and simulation results even when the topologies are
sparse. The results of the study are counterintuitive and the
effect of wavelength conversion on the blocking performance
of a given network topology cannot be predicted a priori
without an accurate analysis.

Wavelength-routing is most likely to be used in WAN’s
where a broadcast-and-select approach to switching ceases to
be feasible [14]. The topology of such a network typically
evolves into an irregular physical topology with arbitrary con-
nection patterns. To model this practical situation, we consider
random topologies in Section VII. We evaluate the ensemble
average of the blocking probability and study the effects of

20ur model includes networks without wavelength converters and networks
with full wavelength conversion as special cases.

connectivity and wavelength conversion. OQur conclusions are
presented in Section VIII.

II. AN ANALYTICAL MODEL FOR
PATH BLOCKING PERFORMANCE

In this section, we develop an analytical model that has
modest computational requirements and improves upon the
previously proposed models of [9] and [10] by considering
real-time input traffic and by incorporating the correlation be-
tween the wavelengths used on successive links of a multilink
path. We first assume that there is no wavelength conversion.
In Section III, we include the effect of wavelength conversion.

A. Model Assumptions

The following assumptions are used in our analytical model.

1) Call requests arrive at each node according to a Poisson
process with rate A. Each call is equally likely to be
destined to any of the remaining nodes.

2) Call holding time is exponentially distributed with mean
1/p; the offered load per station is p = A/p.

3) The path used by a call is chosen according to a prespec-
ified criterion (e.g., random selection of a shortest path),
and does not depend on the state of the links that make
up a path. The call is blocked if the chosen path cannot
accommodate it. Alternate path routing is not allowed.

4) The number of wavelengths, F, is the same on all links.
Each node is capable of transmitting and receiving on
any of the F' wavelengths. Each call requires a full
wavelength on each link it traverses.

5) Wavelengths are assigned to a session randomly from
the set of free wavelengths on the associated path.?

First, let us define a wavelength as “free” on a path if

that wavelength is not used on any of the links constituting
the path. A wavelength is “busy” on a path otherwise. The
model in [10], henceforth called the independence model,
assumes that the link loads are independent and that the
wavelengths used on a link are uniformly distributed over the
entire set of wavelengths, independently of all other links.
These two assumptions result in an overestimation of the
blocking probability, as shown in Section IV. The performance
estimate is very crude (an inaccuracy of about two orders of
magnitude) for sparsely connected networks such as the ring,
and gets better with increasing connectivity. In this paper, we
propose a model that can be used to estimate the performance
accurately even for sparse networks.

B. Notation

We define the following probabilities* that will be used in
obtaining the blocking probabilities.

* Q(wy) = Pr{w; wavelengths are free on a link}.

* S(ys | zpr) = Pr{y; wavelengths are free on a link of
a path |z,; wavelengths are free on the previous link of
the path}.

3Other heuristic wavelength allocation strategies may provide better per-
formance [15], but are considerably more difficult to analyze.

4We have attempted to make the notation easier to follow by using the
subscript f for free, c for continuing, pf for free on previous, and ff for free
on first.
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Fig. 1. Calls arriving and leaving on a two-hop path.

o Ulze | yf,2ps) = Pr{z. calls (wavelengths) continue
to the current link from the previous link of a path
|zps wavelengths are free on the previous link, and yy
wavelengths are free on the current link}.

* R(ny | xs¢,y5,2:) = Pr{ns wavelengths are free on a
two-hop path |z ;s wavelengths are free on the first hop
of the path, y; wavelengths are free on the second hop,
and z, calls continue from the first to the second hop}.

« TW(ng,ys) = Pr{n; wavelengths are free on an [-hop
path and y; wavelengths are free on hop [}.

« p; = Pr{an [-hop path is chosen for routing}.

C. The Conditional Free Wavelength Distribution

In addition to the assumptions stated in Section II-A, we
assume the following. The load on link ¢ of a path given
the loads on links 1,2,---,7 — 1, depends only on the load
on link i — 1. We, therefore, call our analytical model as
the (Markovian) correlation model. The analysis in this paper
differs from the one we presented in [16], which neglected
link load correlation. We start by considering a two-hop path
and deriving the conditional free wavelength distribution on
the path. In Section II-D, we extend the analysis to determine
the blocking probability on a path of arbitrary hop length.
To model the correlation between the loads on the two links,
we employ a three-dimensional Markov chain as follows.
Referring to Fig. 1, let C; be the number of calls that enter
the path at node 0 and leave at node 1, let C, be the number
of calls that enter the path at node O and continue on to the
second link, and let C,, be the number of calls that enter the
path at node 1. Therefore, the number of calls that use the first
link is C; + C. and the number of calls that use the second
link is C, + C,,.

Since the number of calls on a link cannot exceed the total
number of available wavelengths, F', we have C; + C. < F,
and C, + C,, < F'. Suppose the arrival rate of calls that enter
at node 0 and leave at node 1 is A, and the arrival rate of
calls that enter at node 0 and continue on to node 2 is A.. Let
the corresponding Erlang loads be denoted by p. = A./p
and p. = A./p, where 1/p is the expected value of the
exponentially distributed call holding time. By the assumption
of uniform traffic distribution, the arrival rate of calls that
enter the path at node 1 is the same as the arrival rate of calls
that leave the path at node 1. C), C,, and C,, can therefore be
characterized by a three-dimensional (3-D) Markov chain, with
the state space as shown in Fig. 2. Each state is represented
by an integer triplet (¢, ¢, ¢,) (the circles in Fig. 2).
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Fig. 2. The state space of the 3-D Markov chain.

We can now determine the steady-state probability of state
(ctyceycn) as [17]

.
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In the absence of wavelength converters, a call is blocked
on a two-hop path if there is no free wavelength on the path.
Now we compute the free wavelength distribution on a two-
hop path. The conditional probability that n; wavelengths are
free on a two-hop path given z ¢y wavelengths are free on the
first link, y; wavelengths are free on the second link, and 2.
calls continue from the first link to the second link, is obtained

by simple enumeration as
G020 )
ny Yr — Ny

(F - zc>

ys
for min(zs¢,ys) > ny > max(0,25¢ + yg + 2. — F), and
is zero otherwise.

Recalling our notation in Section II-B, the probabilities

Ulze | ysr2ps), S(us | Zps), and Q(wy) can be derived
using Fig. 2 as follows:

R(ng [ zpp,y5,2:) =

U(Zc | yf>xpf)
:P(OC:ZClCn-FCc:F—yﬁCz-{—Cc:F—wpf)
. INF — ps — 2¢y 2, I — yf — %)
z:‘cii(opﬁm”f’}hyf) T(F — 2ps — Tey e, F — yp — xc)
S(ys | zps)
=P(Cph+Ce=F—y; |C+Ce=F —zp¢)
min(F—=,7,F=y) 1

z.=0

F— -z
chzxopf Efn:ggo I(F = @py — T, Te, Tn)

2

(F_xpf — Tey Ty B — Yy — )
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and

P(C/+C. = F —wy)
F—’qu F—z.

= Z Z H(F—’LUf—fL'c,xmz'n)- (1)

z.=0 z,=0

Qwy) =

Next, we use the conditional free wavelength distribution
to obtain an expression for the blocking probability (in the
absence of wavelength conversion) on a path of arbitrary hop
length.

D. Blocking on a Multihop Path

Consider an [-hop path. A call is blocked if there is no free
wavelength on the path at the time of call arrival. Suppose we
know the joint probability, 7U=1(z;,x,), that there are
x ¢y free wavelengths on an (/ — 1)-hop path, and 2,5 (>zf¢)
wavelengths are free on the last hop of that path. Because of
our assumption that the load on the I/th hop is dependent only
on the load on the (I — 1)th hop, the probability of blocking
on the [-hop path can be computed using the results for a two-
hop path derived in Section II-C. This is done by viewing the
first [ — 1 hops as the first hop and the /th hop as the second
hop-of a two-hop path. To complete the recursion, we need to
determine the joint probability of n; free wavelengths on the
{-hop path and y; free wavelengths on the /th hop.

Using the chain rule of probability, we have

T® (nf vs)
F  min(F-z,5,F—ys)

D>

Tpr=0xsr=0 z.=0
x Ulze | yp,zps)S(ys | z’pf)T(l_

(nf ] 'szazcvyf)

(zss,pp). ()

In writing the above, we have used the following facts.

i) The number of free wavelengths on the [-hop path is
not dependent on the number of free wavelengths on
hop ! — 1 when the number of free wavelengths on the
path consisting of the first [ — 1 hops is given.

i) The number of calls that continue from the first to the
second link of a two-hop path depends only on the
number of free wavelengths on each of the two hops.

iii) The number of free wavelengths on the second link of
a two-hop path is dependent only on the number of free
wavelengths on the first link.

The starting point of the recursion, 7" (n £,Yf) is zero when
ng # yy, and is equal to the probability of having n; free
wavelengths on a link, Q(ny), given by (1), when ny = yy.

The probability of blocking on an [-hop path is simply the
probability of finding no Wave]ength free on the [-hop path,
and is, therefore, given by Ey _oT"W(0,yy). The network-
wide blocking probability in the absence of converters is then
computed as

N-1 F

=1 yy=0

for a network of N nodes.

E. Estimation of Parameters

The analysis in the last two subsections can be used to
compute the call blocking probability in a network without
wavelength converters. This analysis assumes that the hop-
length distribution, p;, and the arrival rates of calls at a link
that continue on to the next link of a path and of those that
do not, A\, and ). respectively, are known. The hop-length
distribution is a function of the topology and the routing
algorithm and is easily determined for most regular topologies
with shortest-path routing, as seen in the following sections.

Typically, the traffic in the network is specified in terms of
the set of offered loads between station pairs. The call arrival
rates at links have to be estimated from the arrival rates of calls
to nodes. The complication in estimating the link arrival rates
is that the entire offered load is not carried by the network
because of call blocking. The probability of blocking is, in
turn, dependent on the arrival rate to the links. This leads to a
system of coupled nonlinear equations called the Erlang map
[8]. While solving the Erlang map leads to a more accurate
computation of blocking probabilities, the effect of blocking
probabilities on the carried load can be neglected, especially
when these probabilities are small. We take this approach in
the rest of the paper to keep the analysis simple.

When the blocking probabilities are small, the link arrival
rates, A, and A., can be computed as follows. Consider a
network with N nodes. Let the total arrival rate of calls at a
link be v (=X, + A.). The sum of arrival rates of calls at all
links in the network is vL, where L is the number of links
in the network Since a call uses a path of expected length
H = Zl < Ipy, the sum of arrival rates at all links in the
network is also NAH where ) is the call arrival rate at a
node. Thus

_ N)H

=TT

(For networks that are asymmetric, the arrival rates at all links

may not be the same even if the node arrival rates are the

same. In such cases, ~ is the arrival rate averaged over all the
links in the network.)

Having obtained the total arrival rate per link, we now
estimate the arrival rates A, and A.. A plausible estimate for
the probability of a call leaving the network at a given node
is 1/H. Now, consider an intermediate node of a path and
define an exit link of this node as an outgoing link that does
not return to the previous node of the path. Suppose there are
k exit links per node. We assume that if a call does not leave
the network at the node, it chooses one of the k£ exit links
arbitrarily.” Therefore, given a path and a link of the path, the
arrival rate of calls that continue on to the next link of the
path can be estimated as

€))

1-1/H
—

Calls that do not continue on to the next link of the path
either leave the network or continue on a different link from

Ae =7 @

3For irregular topologies where the number of exit links may be different
for different nodes, k& could be taken as the average number of exit links per
node.
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the given node. The arrival rate of such calls at the given link
is simply given as

A = Y= Ac. (5)

It is worthwhile observing at this point that the correlation
model we have just presented subsumes the independence
model that assumes that link loads are independent. When A,
is set to zero and ). is set to -y, our model greatly simplifies
and reduces to the model presented in [10]. The independence
model is shown to be inaccurate for sparse topologies in
Section IV, and, more importantly, the correlation model is
shown to be quite accurate.

III. SPARSE WAVELENGTH CONVERSION

In the previous section, we assumed that wavelength con-
verters are absent in the network. Wavelength converters
improve the blocking performance by allowing a circuit to be
established as long as some wavelength is available on each
link of the desired path. To enhance the blocking performance
of the network, wavelength converters are placed at some of
the nodes. All the previous analyses in the literature have
considered networks without any converters or networks with
converters at every node. An interesting design alternative that
has not been considered previously is one in which wavelength
conversion is available in a subset of network nodes to achieve
a balance between cost and performance. An architecture for
network nodes which convert wavelengths is presented in
[18], and can be used in networks with sparse wavelength
conversion.

We model a network with sparse wavelength conversion by
assuming that a node is capable of wavelength conversion
with probability ¢ independently of the other nodes. ¢ is
called the conversion density of the network. The number
of converter nodes in an N-node network is thus binomially
distributed with an average of N¢q converters, and the blocking
performance we obtain is the ensemble average of the blocking
probability over this distribution. This probabilistic approach
enables a single parameter characterization of the wavelength
conversion density and eliminates the unpleasant task of
evaluating the performance for each number and placement
of converters.

Note that we assume that a node can either convert any set
of wavelengths to any other, or cannot convert any wavelength.
However, our analysis also applies to the case of limited
wavelength conversion per node discussed in [13]. In partic-
ular, we predict the ensemble average blocking performance
of the share-per-node architecture of [13], where the number
of conversions at each node is binomially distributed with a
mean of F'Dgq, D being the number of links per node.

Consider an [-hop path in a network with conversion density
g and let the nodes on the path be numbered s, 1,2,---,[—1,d,
as shown in Fig. 3. Let the call blocking probability on the
path be denoted by Pb(l>(q). We recursively compute the call
blocking probabilities on paths of different hop lengths. The
idea behind the recursion is as follows. Suppose node ¢ is the
last converter on the [-hop path. A call is not blocked on the
path if a) the call is not blocked on the first ¢ hops of the path
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Fig. 3. An [-hop path with nodes numbered s,1,2,---,1 —1,d.

and b) there is a wavelength that is free on the last [ — ¢ hops
of the path. These two events, however, are not independent
because the probability of blocking on the last [ — ¢ hops
depends on the number of free wavelengths on hop (7 + 1).
This depends on the number of free wavelengths on hop <,
which, in turn, is dependent on whether the call is blocked on
the first « hops or not. To analyze this situation exactly, we
introduce the following probabilities. Let

« VO(ny,ys | wy) = Pr{ns wavelengths are free on an
l-hop path and y; wavelengths are free on hop ! | wy
wavelengths free on the first hop of the path and no
converters along the path};

» WW(y; | wy) = Pr{y; wavelengths are free on hop [ of
an [-hop path | wy wavelengths free on the first hop of
the path and no converters along the path};

. Pb(l)(q,yf) = Pr{a call is blocked on an l-hop path
and y; wavelengths free on hop [, when the conversion
density is g¢}.

Equation (2) can then be modified to give

VO(ng,yp | wy)

_ i i Lpf

> R(ng | @ss:2e,y5)
zp5=02,=0x77=0

x Ulze | y5,3p5)S(ys | 2pp) VD (1, mpplwy) (6)

for i =2,3,---,N — 1, where Z = min(F — zp¢, F' — yy).
For a one-hop path

1, ifnp=yr=w
V(l)(nf»yf | wy) = {07 othe];wisef ’

Furthermore, by summing over all possible values of ny in
(6), we obtain

Y5
WOys |ws) =" VO(ng,yp | wy).
ny=0

The range of the variable ny in the above equation is only
up to y; because the number of free wavelengths on an [-hop
path without converters cannot be higher than the number of
free wavelengths on any hop, in particular, hop /.

On a one-hop path, a call is blocked if and only if there is
no free wavelength on the hop. Therefore

(g oy = JQO), ifyr=0
P, (Q»yf)—{o, otherwise

where Q)(wy) is the probability that ws wavelengths are free
on a link, as given by (1).

For [ > 2, the joint probability, Pb(l)(q, yy), can be com-
puted recursively by conditioning on the disjoint events that
node 7 is the last converter on the given path of [ hops,
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i =1,2,--+,1 — 1. Thus

l
P (a,95)
= P(Blocking and y; free on last hop | no converters

in path) - P(no converters in the path)
-1
+ Z P(Blocking and y; free on last hop | node i last
i=1
converter) - P(node 4 last converter). @)

When there are no converters, the joint probability of a call
being blocked and y; wavelengths being free on the last hop
of an [-hop path is given by T (0,y;) [see (2)]. The first
term in (7) is thus T7)(0,y)(1 — ¢)'~ L. The joint probability,
Y (i, q,ys), of a call being blocked and y; wavelengths
being free on the last hop of an [-hop path when node : is
the last converter is obtained in the Appendix. The resulting

P{(q,yy) is given by

PP (g, y5) = TO(0,y)(1 ~ g)'
-1
+ 3 YO, q,y5)q1 -7 (®)

i=1

where Y (U(4,q,yy) is given in terms of Pb(i)(q, yr) in (A1)
of the Appendix. The network call blocking probability when
the conversion density is ¢ is then given by

N-1 F

IAOED DY PO, y5)m.

=1 y;=0

Given a network topology, we first determine the hop-
length distribution, p;, and the number of exit links, k.
Then, (3)-(5) are used to obtain the call arrival rates. The
blocking performance can then be studied by using the analysis
presented in Section II and this section. In the next four
sections, we evaluate the call blocking performance for the
ring, the mesh-torus, the hypercube, and random topologies,
respectively.

IV. BLOCKING IN A RING NETWORK

In this section, we apply the above analysis to a unidirec-
tional ring network. The ring is the most sparsely connected
network with a given number of nodes®, and we are interested
in finding the effect of conversion density on such a network.

To verify the accuracy of the proposed analytical frame-
work, we performed a simulation study of the call blocking
performance in ring networks of different sizes. Each data
point in the simulation was obtained using 10° call arrivals. We
simulated the no-converter (¢ = 0) and full-converter (¢ = 1)
cases and obtained the blocking probability to compare with
the analytical results.

For an N-node unidirectional ring, the probability that an
[-hop path is used for routing a session is, p; = I—Vlfl for
1 <1< N -1, and k is 1. First, we plot the call blocking
probability against the load per station for a 100-node network

6 A star network is equally sparse in terms of the number of links, but has
a lower average hop-length.

when the number of wavelengths per fiber are five and 20,
in Fig. 4(a) and (b), respectively. Analytical and simulation
results are plotted for the no converter case (¢ = 0), and
the full-converter case (¢ = 1). In both cases, the converter
case curves lie below the corresponding no-converter case
curves. The close match between the analytical and simulation
results indicates that the model is adequate in analytically
predicting the performance of even very sparse networks.
For comparison, we also plot the analytical results when
Xe = AH and )\, = 0 (independence model). It is seen that
the independence model severely overestimates the blocking
probability.” We observe that wavelength converters are more
useful when the number of wavelengths per fiber is larger and
the load is lower. This can be explained as follows. When the
number of wavelengths is larger, blocking occurs primarily
not due to a lack of resources (wavelengths) but due to the
inability to use those resources efficiently in the absence of
conversion. Thus, converters are more useful when the number
of wavelengths is larger. Under heavy loads, blocking occurs
primarily due to a lack of sufficient number of wavelengths
and the presence of converters does not have as much effect
as at lighter loads.

Fig. 5(a) shows how the blocking probability changes with
wavelength conversion density, g, for several values of F’ for
a 20-node (solid lines) and a 100-node (dashed lines) ring
network when the network load is 2 Erlangs (a load of 0.1 per
station for the 20-node network and a load of 0.02 per station
for the 100-node network). Two important observations can be
made from these curves. Firstly, when the network has more
nodes and/or the number of wavelengths is higher, the blocking
probability drops fast initially with conversion density and then
rapidly levels off at a certain point. Secondly, the density at
which the performance begins to level off increases marginally
as the number of wavelengths increases. In contrast, when
the network is smaller, the blocking probability decreases
more gradually. In either case, the decrease in blocking due
to conversion density is almost insignificant. This leads to
the observation that adding converters is not the solution to
increasing the performance in very sparse networks.

We have also simulated the performance of a ring network
with a fixed number Ng of converters which are randomly
placed over the ring. We do not show the results of this
experiment in order not to impair the clarity of Fig. 5(a).
These results indicate that the ensemble average is a very good
approximation for this scenario.

Finally, we plot in Fig. 5(b) the number of stations that
can be supported for a blocking probability of 10~ against
the conversion density, for different loads. When the load per
station is high (0.05 Erlangs), conversion density has very little
effect on the number of stations that can be supported. This
is again due to the limitation of the resources and not due
to lack of efficient utilization of those resources. When the
load becomes lighter (0.01 Erlangs), wavelength conversion
helps initially in increasing the utilization but the performance
begins to level off when the limit on resources is approached.

7The blocking probabilities are somewhat overestimated in all the curves
because of the slight decrease in carried load due to blocking, which we have
ignored.
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V. BLOCKING IN A MESH-TORUS NETWORK

We next consider a bidirectional M x M mesh-torus network
with N = M? nodes such as shown in Fig. 6. A mesh-torus
network is more connected than a ring but the average-hop
length is still large. For simplicity in computing the hop-length
distribution, we consider only odd values of M. We assume
static routing where the route for a connection is randomly
chosen from one of the many shortest path routes available.
With this routing scheme, there are 4i nodes at distance ¢
and 4(M — j) nodes at distance j from any node, where
1 <4< =1 and ¥=1 < j < M — 1. Therefore, we have

4

_ ) -1
= {4(M—l)
MZ_1

1<1< M
Mol < M—-1

and the average hop-length is O(M). The number of exit
links per node, k, is three. The blocking performance is then
analyzed by using the results of Sections II and IIL

In Fig. 7, we plot the simulation and analytical (inde-
pendence and correlation models) results for a 101 x 101
mesh-torus network with five wavelengths per fiber for the
no-converter (g = 0) and full-converter (¢ = 1) cases. The
results of our analytical model and the simulation results
match very closely. The independence model is less accurate
than our model but not significantly so, indicating that the
load correlation between successive links is very high in
sparse networks and decreases as the network becomes more
densely connected. We observe from the figure the tremendous
improvement in performance with wavelength conversion,
unlike in the case of the ring.

In Fig. 8(a) and (b), we show the effect of conversion
density on blocking probability for the 11 x 11 and a 101
x 101 bidirectional mesh-torus networks, respectively. As in
the ring, we observe that conversion helps more when there
are more wavelengths per fiber (the blocking probability drops
more steeply with ¢ as the number of wavelengths increases).
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Fig. 7. The blocking probability versus the load per station for a 101 x 101
mesh-torus network with five wavelengths per fiber. Simulation results are
reproduced from {10] with permission from the authors.

Furthermore, the advantages of wavelength conversion are
much higher in a larger network and as the network size
increases, performance increases dramatically initially with
conversion density. For example, we observe from Fig. 8(b)
that, when F = 5, the blocking probability drops from 10~!
to 102 as the conversion density increases from zero to about
0.2, and then decreases more gradually. When F = 8§, a
decrease in blocking probability of two orders of magnitude
occurs as g increases from zero to about 0.1. This not only
suggests that having a converter at every node may be un-
necessary to achieve a certain performance but also that the
proportion of converter nodes required is a function of the
size of the network and the number of wavelengths per fiber.
However, unlike in the ring, when there are a large number of
wavelengths, the performance does not level off sharply with
increasing conversion density. This suggests that the utilization
of converters is affected more by the large hop-lengths in the
mesh than by the load correlation that dominates in the ring.

Fig. 9 shows how the number of stations that can be
supported increases with the conversion density. At lighter
loads, the advantages of conversion are much more significant
than in the case of the ring. (Note that the square root of the
number of stations is plotted on the Y-axis.) This is due to
the better mixing of traffic in a mesh-torus although the paths
are shorter than those in the ring.

VI. BLOCKING IN A HYPERCUBE NETWORK

We next analyze a well-connected network, the binary
hypercube (called hypercube in the rest of the paper). An
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N(=2")-node hypercube network has n outgoing links per
node. We assume that one of the shortest paths between the
source and destination nodes is chosen for routing a session.
Using this routing scheme, we have

1 n
= — <<
pi N_l(l>a 1__—1_’11

and the average hop-length is O(n). The number of exit links
per node, & = n — 1. The blocking performance is then
analyzed using the results of Sections II and III.

Fig. 10(a) and (b) show how the performance varies with
the load per station for a 32-node and a 1024-node hypercube,
respectively. Again, the converter case curves lie below the
corresponding no-converter case curves. The analysis and
simulation results match very closely. Because of very low
load correlation between successive links, the independence
model also predicts the performance accurately, though not as
well as the correlation model. Since hop-lengths are small in
a hypercube network, we do not expect converters to be very
useful. The figures corroborate this intuitive observation.

In Fig. 11, we plot the blocking probability against the
converter density for a 1024-node hypercube with a load of
0.1 Erlangs per station. The previous observation of converters
helping more when there are more wavelengths per fiber holds
for the hypercube as well. We also see that the performance
improves dramatically with an increase in the number of
wavelengths. This is a direct consequence of the fact that the
hypercube nodes have very high degrees, and therefore; the
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total number wavelengths in the network grows very rapidly
with increasing wavelengths per link.

The results of the last three sections lead to the remarkable
observation that the usefulness of converters is a complex
function of connectivity. On one hand, when connectivity
is low as in the ring, hop-lengths are large and converters
are expected to be more useful. On the other hand, the load
correlation between successive links is high and this tends
to reduce the usefulness of converters [9]. This latter effect
dominates the hop-length effect in the ring. In the hypercube,
the hop-lengths are small. Therefore, even though the load
correlation is negligible, converters do not offer significant
advantages. In the mesh network, the load correlation is fairly
low while hop-lengths are large enough so that converters
improve performance dramatically. The benefits of conversion
are thus dependent on which of the two effects dominates in
a given topology and are difficult to predict a priori without a
detailed analysis such as the one we have presented.

VII. BLOCKING IN RANDOM TOPOLOGIES

We studied the above networks to gain an understanding
of how conversion density affects the blocking performance
under varying degrees of network connectivity. In this section,
we study the performance of a more likely topology for
a WAN, namely an irregular topology. It is very difficult
to analytically predict the performance of a given irregular
topology with a particular placement of wavelength converters.
However, it is possible to analyze the (ensemble) average
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Fig. 12. The blocking probability versus the converter density for a random
network. N = 100, b = 10, p = 1.

performance of all irregular network topologies characterized
by a given connectivity parameter with a converter distribution
characterized by another parameter.

We employ the following model for a random topology of NV
nodes. Each of the possible N (/N —1) directional links exists in
the network with probability N“b—_l’ independently of all other
links. Thus, each node has an average of b outgoing links.
This model does not ensure that the network is connected.
However, the model lends itself to easy analysis of the hop-
length distribution and is used in this paper.

We again assume that one of the shortest paths between the
two end-nodes is chosen arbitrarily for a connection. The hop-
length distribution is easily obtained for the regular topologies
discussed but is extremely difficult to compute exactly for
a random network. Exact computation of the probabilities is
trivial for one and two hop paths but for longer paths, the
complexity is exponential in the network size [19]. Asymptotic
expressions for the shortest-path distribution are given in [20].
In this paper, a slight variation of an approximation given
in [21] is used. The approximation has been observed to be
accurate for large values of N in simulations.

Given a node, let h; be the average number of nodes that
are reached on the /th hop from the given node, and let I'; be
the average fraction of nodes (excluding the given node) that
can be reached in [ or fewer hops. The hop-length distribution
is computed using the following set of recurrence relations,
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hi= (N —1)(1 = T_1)

where p; = hy/(N — 1) is the probability of an [-hop path
hy

b hi—1
()
N-1

with hy = b, and I'y = b/(N —1).
The average number of exit links per node can be shown
to be :

Ti=T1+

(1 - )b

= B \N-2'
1= (1= 5%)

k

We assume a value of b that is sufficiently high to keep the
probability of an unconnected network small. For N < 500, a
value of b > 10 almost ensures connectivity.

We obtain the blocking performance using the analysis
of Sections II and HI. Fig. 12 shows that wavelength con-
verters do not affect the performance much in a densely
connected random network. A small increase in the number
of wavelengths per link causes a significant improvement
in the blocking performance, as shown in Fig. 12. This is
because of the large number of links in the network. Because
of the abundance of the number of available wavelengths
in the network, the blocking probability never levels off
with increasing conversion density. However, the decrease in
blocking with increasing conversion density is only marginal
because of the short hop-lengths.
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Fig. 13 shows the dramatic improvement in performance
with network connectivity. In Fig. 14, we have plotted the
blocking probability against the load per station for the no-
converter and full-converter cases when the average out-degree
per node is ten.

Fig. 15 shows how the maximum number of stations that
can be supported so that the blocking probability is below
10~2 varies with conversion density for different loads. As
before, when the loads are heavy, conversion does not help
much. But when the load is light, conversion is beneficial.
However, the benefits of conversion are not as great as in a
less dense network such as the mesh.

The average amount of resources available per node is the
average number of wavelengths available per node. For the
random network considered here, this is equal to the product
of the average number of links per node and the number
of available wavelengths per link. Fig. 16 shows how the
blocking performance varies with the number of wavelengths
per link while the network becomes less dense so that the
average amount of resources in the network is held constant.
We see that, when the network is fairly dense (b > 10 for
a 500-node network), it is always better to have fewer links
with more wavelengths per link.

VIII. CONCLUSION

We have introduced the concept of sparse wavelength
conversion in wavelength-routed, all-optical, circuit-switched
networks. To evaluate the blocking performance of such net-
works, we have developed an analytical model of modest
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Fig. 15. The number of stations supported versus the converter density for
a random network. F' = 4, b = 10.

complexity. We have shown the model to be accurate for
a variety of network topologies by comparing the analytical
results with results from simulations. We applied this model to
analyze three regular network topologies with varying degrees
of connectivity—ring, mesh-torus, and hypercube.

An important conclusion of our study is that the usefulness
of wavelength converters depends on the connectivity of the
network in a manner that cannot be predicted by intuition.
When the connectivity is low, such as in the ring, converters
are not very useful because of the high load correlation.
This high correlation implies that the expected number of
links shared by any two sessions is large; conversion merely
permutes the wavelengths used by the sessions without greatly
increasing the ability to accommodate a new session. When
the connectivity is high, such as in the hypercube or a
densely connected random topology, converters are not very
beneficial because of small hop-lengths, despite low load
correlation and significant traffic mixing. This indicates that
in a WAN with an irregular topology and a large number
of links, the number of wavelengths is much more important
than wavelength conversion capability. A mesh-torus network
with a degree of connectivity between those of the ring
and the hypercube, remarkably, offers great advantages when
wavelength converters are present. This is because the link
load correlation is almost negligible while the hop-lengths are
large compared to the more densely connected hypercube.

The performance improves rapidly as the conversion density
increases from zero, but the rate of improvement typically
decreases with increasing conversion density. The conversion
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density beyond which the performance improves only margin-
ally depends on the number of wavelengths and the network
load. This suggests that placing a converter at every node is
rarely necessary, if at all. In general, wavelength converters
are more effective when the number of wavelengths is larger
and when the load is lower.

The results of this paper point out the importance of a
detailed analysis of a given network topology in determining
the number and placement of wavelength converters. While we
have shown that having converters at a small fraction of nodes
is typically sufficient for a desired performance, the problem
of converter placement remains to be studied.

Our model has assumed the use of fixed shortest path routing
for establishing a session. The effect of alternate or dynamic
routing on the benefits of conversion is an issue that merits
attention. Finally, blocking probability is but one performance
measure and other performance measures (such as throughput
and delay in a packet-switched network) could be considered
to study the usefulness of wavelength conversion.

APPENDIX

In this Appendix, we obtain the joint probability,
Y®(i,q,ys), of a call being blocked on an [-hop path and
y; wavelengths being free on the last hop of the path when
the conversion density is ¢ and node ¢ is the last converter.
This probability can be written as Y (i, q,y;) = Pr{y;
wavelengths free on hop ! | node 4 last converter } — Pr{No
blocking on first 7 and on last [ — ¢ hops and y; free
wavelengths on hop ! | node 7 last converter}.
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The probability that y; wavelengths are free on hop ! is
Q(ys) and is statistically independent of conversion density.
Referring to Fig. 3, Pr{No blocking on first ¢ and on last
[ — 4 hops and y; free wavelengths on hop ! | node i
last converter} = ngzo Ei:o P(A)P(B)P(C), where the
events A, B, and C are defined as follows.

A: Call is not blocked on the first i hops and k £ wave-

lengths are free on hop 4.

B: wy wavelengths are free on hop ¢ + 1 given ks wave-
lengths are free on hop i.

C: Call is not blocked on the last [ — ¢ hops and yy
wavelengths are free on hop [ given that w; wavelengths
are free on hop 4 + 1 and there are no converters along
the (I — 7)-hop path.

Now

P(A) = Q(kys) = P (q,ky)
P(B) = S(wy | ky),
and
P(C) =W (ys | wy) — V(0,54 | wy).

Substituting for P(A), P(B), and P(C), we can now write

YO (i, q,y5)
F

=Qur) ~ ¢ > (Qlkp) — P, kyp)) -

k;=0

F
> S(wy | kp):

w =0

WDy | ws) = VD0, 5 | wy))
(A.1)

This expression is used in (8) to evaluate the blocking proba-
bility of networks with sparse wavelength conversion.
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