
Journal of Parallel and Distributed Computing 171 (2023) 14–23

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Forseti: Dynamic chunk-level reshaping for data processing on

heterogeneous clusters

Sultan Alamro a,b, Tian Lan b,∗, Suresh Subramaniam b

a Department of Electrical Engineering, College of Engineering, Qassim University, Buraidah 51452, Saudi Arabia
b Department of Electrical and Computer Engineering, the George Washington University, Washington, DC, 20052, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 February 2022
Received in revised form 26 August 2022
Accepted 3 September 2022
Available online 14 September 2022

Keywords:
Distributed computing
Scheduling

Data-intensive computing frameworks typically split job workload into fixed-size chunks, allowing them
to be processed as parallel tasks on distributed machines. Ideally, when the machines are homogeneous
and have identical speed, chunks of equal size would finish processing at the same time. However, such
determinism in processing time cannot be guaranteed in practice. Diverging processing times can result
from various sources such as system dynamics, machine heterogeneity, and variable network conditions.
Such variation, together with dynamics and uncertainty during task processing, can lead to significant
performance degradation at job level, due to long tails in job completion time resulted from residual
chunk workload and stragglers.
In this paper, we propose Forseti, a novel processing scheme that is able to reshape data chunk size on
the fly with respect to heterogeneous machines and a dynamic execution environment. Forseti mitigates
residual workload and stragglers to achieve significant improvement in performance. We note that Forseti
is a fully online scheme and does not require any a priori knowledge of the machine configuration nor
job statistics. Instead, it infers such information and adjusts data chunk sizes at runtime, making the
solution robust even in environments with high volatility. In its implementation, Forseti also exploits a
virtual machine reuse feature to avoid task start-up and initialization cost associated with launching new
tasks. We prototype Forseti on a real-world cluster and evaluate its performance using several realistic
benchmarks. The results show that Forseti outperforms a number of baselines, including default Hadoop
by up to 68% and SkewTune by up to 50% in terms of average job completion time.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Data-intensive computing frameworks (DISCs) have become the
de facto standard for large-scale computing applications like web
indexing and data mining, which often need to process up to
petabytes of data on a daily basis. To enable distributed computing,
these frameworks typically split job data into fixed size chunks and
process them by parallel tasks on distributed machines that involve
commodity hardware/software. Ideally, in a homogeneous environ-
ment with identical-speed machines and equal-size chunks, the
chunk processing intervals would be perfectly aligned with each
other, eliminating any possibility of residual workload and strag-
glers1 during job executions. However, such an ideal homogeneous

* Corresponding author.
E-mail addresses: alamro@qec.edu.sa (S. Alamro), tlan@gwu.edu (T. Lan),

suresh@gwu.edu (S. Subramaniam).
1 Stragglers refer to tasks that are running slow and behind the progress of aver-

age task executions.
https://doi.org/10.1016/j.jpdc.2022.09.003
0743-7315/© 2022 Elsevier Inc. All rights reserved.
environment is not feasible in practice. It has been shown that the
divergence and uncertainty in task processing times resulting from
machine heterogeneity and execution dynamics could lead to sig-
nificant performance degradation of up to 75% [1] due to residual
workload and stragglers.

This paper proposes a novel processing scheme called Forseti,
which has the ability to reshape data chunk size processed by het-
erogeneous machines on the fly and to dynamically balance the
workload assigned to parallel processing tasks. It effectively miti-
gates residual workload and stragglers during job execution, and as
a result, leads to substantial job-level performance improvement,
e.g., in terms of job average completion times and completion
time tails. We note that the performance loss stemming from ma-
chine heterogeneity and execution dynamics has been identified
by many researchers [45,1]. While existing work mainly focuses on
either optimizing DISC cluster configurations based on the specific
applications and infrastructure available [20,21,34,6] or mitigat-
ing the negative effect of stragglers through task scheduling and
placement [4,3,43,45,9], Forseti advocates an alternative approach

https://doi.org/10.1016/j.jpdc.2022.09.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.09.003&domain=pdf
mailto:alamro@qec.edu.sa
mailto:tlan@gwu.edu
mailto:suresh@gwu.edu
https://doi.org/10.1016/j.jpdc.2022.09.003

S. Alamro, T. Lan and S. Subramaniam Journal of Parallel and Distributed Computing 171 (2023) 14–23
to reshape data chunk size and re-balance task workload in a dy-
namic, online fashion throughout job processing. This equips the
system with the ability to automatically adapt its execution and
workload partitioning in any heterogeneous, uncertain execution
environment.

Taming residual workload and stragglers is a crucial task for
any computing performance optimization. In practical DISC clus-
ters, heterogeneity can be caused by a number of reasons. First,
the links within data centers suffer from congestion that could
last up to several hundreds of seconds [24,38]. This congestion
makes tasks run slow (i.e., straggle) as their execution time and
progress fall behind the average execution time of other tasks.
Second, cloud providers use virtualization process to provide iso-
lation among jobs and tasks running simultaneously on the same
machines. However, practical task scheduling and isolation mech-
anisms either require precise job processing models or are too
coarse-grained. Third, computing nodes are typically composed of
commodity parts, thereby becoming dissimilar in processing speed.
Last, heterogeneity in execution time can occur due to load im-
balance assigned or created by different tasks [25,26]. Thus, the
divergence in task execution speed on heterogeneous machines is
considered as the main issue that leads to excessive worker idle-
ness (and thus resource under-utilization) in the cluster along with
the creation of stragglers. To better understand the issue of hetero-
geneity and its impact on detecting stragglers on real systems, con-
sider for instance the performance of a map-reduce job in Fig. 1(a).
The figure shows the execution time of map and reduces tasks of
Hadoop for a WordCount benchmark running on a heterogeneous
cluster. In this experiment, we set the level of heterogeneity in
the cluster to 1-2-3 ratio (i.e., CPU speeds are 1x, 2x and 3x of a
base speed). Initially, each map task is assigned 128 MB of data
to process. It can be clearly seen that Hadoop creates discrepancy
in performance among running tasks. Hadoop fails to adapt to the
heterogeneity, even if speculation mechanism is enabled.

To reshape data chunk size and re-balance task workload,
Forseti adapts to the divergence in task execution times and
dynamically redistributes workload through an efficient pointer-
rebalancing mechanism according to the underlying nodes’ pro-
cessing speeds. Forseti estimates the progress rate of different
tasks/chunks, obtain a prediction of task completion times, and
redistributes workload accordingly to minimize any potential resid-
ual work or stragglers. Forseti aims to reassign unprocessed data to
machines so that the completion time of a job is minimized. As a
result, this mechanism also ensures that the overall energy con-
sumption/cost is minimized. Fig. 1(b) shows how Forseti is able to
reduce the overall completion time by 56% compared with Hadoop.
We emphasize that Forseti does not require any a priori knowledge
of the machine configuration nor job statistics. Instead, it infers
such information on the fly and adjusts data chunk sizes at run-
time, making the solution robust even in environments with high
volatility.

While Forseti works with any distributed data processing
framework, for the purpose of evaluating its performance, we im-
plement a prototype of Forseti on Hadoop map-reduce framework.
The reshaping algorithm is implemented in the master, which
monitors the progress rate of all tasks of a job, estimates the com-
pletion time, and redistributes the remaining workload accordingly.
In order to minimize overall network overhead, Forseti checks for
data locally before fetching data from remote nodes. We note that
even when data is not local, we found in our experiments that the
benefit of redistributing data outweighs any overhead caused by
fetching non-local data [32]. Forseti exploits “JVM reuse” to recycle
virtual machine container of completed tasks without termination
and re-launching [30,17,33,19]. It effectively eliminates the JVM
launching time overhead for new tasks. Moreover, Forseti does not
need to know about the cause of divergence and uncertainty in
15
Fig. 1. Timing flow of a WordCount job running map and reduce tasks: (a) Hadoop
(b) Forseti.

execution time of tasks nor the exact job processing model. In ad-
dition, Forseti is designed to be transparent to the task function
and requires no modification to the function design. Evaluating
Forseti on real-world benchmarks, our results show that Forseti
can significantly reduce job execution time by up to 68% on av-
erage compared to default Hadoop and 50% to SkewTune [27], a
popular data rebalancing scheme. Moreover, the results show that
Forseti can exploit the divergence and dynamics in progress rate
among tasks and redistribute unprocessed workload efficiently. The
findings substantiate our assertion that dynamic task/chunk re-
shaping mitigates the discrepancy in progress rate and minimizes
the completion time of a job.

The rest of this paper is organized as follows. Section 2 presents
related work, and Section 3 presents background and our moti-
vation. The design of Forseti is presented in Section 4, and the
algorithm’s implementation is described in Section 5. Experimental
results are presented in Section 6, and finally the paper is con-
cluded in Section 7.

S. Alamro, T. Lan and S. Subramaniam Journal of Parallel and Distributed Computing 171 (2023) 14–23
2. Background and related work

DISC frameworks, such as Hadoop (open source of MapRe-
duce) and Spark, have been widely employed in production sys-
tems. Such frameworks process large datasets (e.g., terabytes or
petabytes of data) across huge clusters (e.g., hundreds or thou-
sands of nodes). The massive data are divided into and configured
as fixed size chunks/blocks and then stored within an underlying
distributed file system so as to support simultaneous processing of
computation tasks across heterogeneous machines and clusters on
the cloud. Generally, the execution flow is processed in a multi-
stage/phase fashion by using the output from one phase as the
input to another phase. A phase is considered completed when
tasks of the phase finish processing. Therefore, a slowdown in one
phase due to some tasks running slow can lead to a late start of
next phase.

The issue of heterogeneity and the way it creates stragglers
have been extensively studied in the context of DISC frameworks.
LATE [45] suggested that MapReduce has many limitations un-
der heterogeneous environments, mainly because straggler iden-
tification mechanisms that are in-built struggle to function prop-
erly within an environment that is heterogeneous. To address this
challenge, better priority, scheduling, and identification techniques
have been proposed. For instance, [5,37,9,8,41,22,3,4,43,42,44] at-
tempt to mitigate stragglers and enhance the speculation mech-
anism of default Hadoop. They have proposed novel strategies to
track stragglers, launch speculative tasks reactively and proactively.
Another study [1] found that the use of remote map tasks in-
creases network traffic when applied on fast machines significantly.
However, one challenge to this technique is that the increased net-
work traffic could end up competing with shuffle between phases,
a factor that causes deterioration in performance. They overcame
this issue through undertaking communication-aware load balanc-
ing as it helps keep away from busty network traffic. This process
is enhanced further by [18] through undertaking fresh key parti-
tioning schemes that have been established to improve Hadoop’s
performance with heterogeneous clusters. A node-capability-aware
data placement model was developed that distributes data among
nodes according to their processing capabilities [36]. The issue of
data skewness among tasks due to data placement in a heteroge-
neous cluster has been addressed in [27,25,28,14,35,18,11].

Going by most research findings, data skewness can be mit-
igated. Here, skewness refers to the imbalance of computational
nodes and datasets among tasks. Various researchers [9,26,2] stud-
ied and analyzed different skews that appear in different types
of applications. SkewTune [27] proposed a strategy which bal-
ances data distribution across different nodes. SkewTune repar-
titions stragglers’ data to capitalize on the idle task which just
finished processing. In contrast to SkewTune, Forseti redistributes
data assigned to all tasks on previous rounds upon a new task
completion. FlexMap [14] tackled the heterogeneity issue and pro-
posed a scheme to create map tasks with small block size and
increase the sizes according to node’s capabilities. The system ini-
tially launches a large number of maps with a small block size.
However, this creates significant scheduling and starting overhead
on the scheduler as well as resource contention. Moreover, it does
not assume a shared cluster and fails to consider the JVM launch-
ing time overhead. Forseti aims to bypass the JVM launching over-
head and follows the policies imposed by the master.

There are other papers too which focus on skewness. [7] pro-
posed a framework that reproduces blocks according to their pop-
ularity. It aims to minimize interference on any running jobs that
have been co-hosted under a similar cluster with an accurate
prediction of file popularity. Another work [16] proposed a task
progress indicator in order to deal with data skewness. [46,40,15]
proposed techniques to improve the performance of DISC frame-
16
Fig. 2. An illustrative example of the impact of a heterogeneous cluster on job com-
pletion time: (a) Default Hadoop. (b) Forseti.

works and jointly optimize performance and cost within heteroge-
neous cloud environments. [39,29] propose a dynamic data place-
ment scheme for a heterogeneous cluster. However, such scheme
requires a priori knowledge about the capability of the cluster. [35]
proposed the concept of a virtual split, wherein its size changes
(by adding more splits) as the mapper runs. Nonetheless, unlike
Forseti, the assigned splits are never reassigned to other maps.

In multi-tenant data centers, resource sharing has become vital.
Various studies have addressed the issue of unpredictable appli-
cation performance in shared clusters [10,23,13]. The lack of per-
formance isolation among users and applications leads to volatile
application performance. The absence of proper isolation causes
the task executions of DISC jobs to be stochastic. The uncertainty
in their execution times affects the ability of straggler identifica-
tion mechanisms, and makes their decision to speculate (or not to
speculate) a straggling task very challenging. Thus, discrepancy in
performance is the norm of shared resources rather than the ex-
ception.

3. Motivations and problem statement

In this section, we start by briefly introducing the fundamen-
tals of DISC frameworks. We also discuss the ways through which
the performance in heterogeneous settings gets severely affected
by having routine parallelization in homogeneous clusters. Further,
we show that the heavy-tailed behavior in the runtime distribution
and large variation of execution times among tasks can be solved
through an efficient dynamic load balancing.

DISC is the default for many data processing systems. Its im-
plementation can be better understood from two specific phases,
namely map and reduce. In this context, input data and a record
of transitional key or value pairs are formed via the map task.
Every map task accesses and processes one split/chunk from a Dis-
tributed File System (DFS). On the other hand, these transitional
key/value pairs are accumulated collectively and thereby passed to
the reduce task through a communication stage named shuffle. A
master monitors the progress of every task, and reports to the user
about the job completion.
Case study. To demonstrate the problem considered in this paper,
we perform a case study on Hadoop map-reduce framework. Con-
sider for instance a DISC job in a heterogeneous environment with
four unrelated tasks, i.e., T = {T1, T2, T3, T4}, which are running
in parallel on four different nodes (N1, N2, N3, N4). It can be seen
(see Fig. 2(a)) that T1 and T2 took a long time compared with T3
and T4. The job cannot be considered complete until the process-
ing of T2 finishes. Moreover, N3 finished first and stayed idle for
the rest of the time. This indicates the inefficiency of the entire

S. Alamro, T. Lan and S. Subramaniam Journal of Parallel and Distributed Computing 171 (2023) 14–23
process. Fig. 2(b) illustrates how Forseti re-balances the remain-
ing workload among running nodes. Upon the completion of T3,
i.e., T f = {T3}, at t1, Forseti checks the progress rate of all running
tasks (i.e., T1, T2, T4) and redistributes the remaining data, i.e., Dr

1,
Dr

2, and Dr
4, among the four tasks so they all finish at the same

time (τ). The figure shows that T4 can finish its remaining work-
load and process more data before τ . Thus, only data belonging
to T1 and T2 are redistributed. This process is repeated until the
completion of all tasks. This case can be extended to consider a
multi-phase framework. However, Fig. 1 shows that the map phase
can take up to 75% of the whole job completion time. Further,
the figure shows that the shuffling starts right after a few map
tasks complete. Nonetheless, the actual processing of reduce tasks
is delayed until the last map task commits its output.2 Thus, since
the execution of reduce tasks takes only about 5% of job execution
time, Forseti is designed to optimize and re-balance workload map
tasks only, which leads to overall reduction in job execution time.
Moreover, Forseti assumes all tasks are independent and have no
precedence among them, which is typical for map tasks.

In DISC frameworks, the presence of homogeneous task model
cannot fulfill the load balancing obligations and thereby main-
tain an effective heterogeneous setting. Furthermore, the model
is also incapable of adapting to the fluctuating performance due
to shared resources. The divergence and uncertainty is a prob-
lem for performance optimization and scheduling. This is because
they make it almost impossible to obtain a precise model of task
processing times. Additionally, tasks are generally regarded as the
procedure of collecting records through serial key-value pairs. Nev-
ertheless, as per the availability of any sort of application, such
records might necessitate CPU as well as memory for process-
ing valuable data based on the runtime of the DISC cluster. The
key is to quickly and accurately estimate the completion time of
running tasks based on their progress rate, and redistribute load
swiftly. Forseti is built to develop straggler and skew mitigation
through an efficient load balancing scheme that dynamically rebal-
ances workload among running tasks. The objective is to reassign
unprocessed data to machines so that makespan of a job (i.e., the
time to complete all the tasks of a job) is minimized. The new load
assignment aims to reallocate workload to machines according to
their capabilities. Unlike [14,27], Forseti reallocates and rearranges
data assigned to all tasks on previous rounds upon a new task
completion. Failure to do so can lead to a significant degradation
and violate the service level agreement (SLA) between users and
cloud operators.

We now formally state the problem of minimizing the com-
pletion time of a job: Given a job (or a set of jobs) with a set
of tasks T , our goal is to design a processing scheme that is ca-
pable of reshaping data chunk sizes assigned to each task on the
fly with respect to cluster heterogeneity in order to minimize the
job completion time. When a task finishes processing, the scheme
takes all tasks’ associated unprocessed workload Dr

n , n ∈ T , and
redistributes it proportionally based on the measured process rate
Rn among all tasks. The goal is to balance the residual workload
among the processing nodes and let all tasks finish at the same
time with the new assignment. We present the details of the de-
sign of Forseti in the next section, and then show the significant
improvement in computing performance that it achieves (see Ta-
ble 1).

4. Forseti design

In this section, we present the design of Forseti and its applica-
bility to any DISC framework. In addition, we explain how Forseti

2 Similar results are reported in [28,27].
17
Table 1
List of symbols.

Symbol Description

T The set of all tasks of a job

Tr The set of all tasks currently processing

T f The set of all idle (finished) tasks

Tw The set of all tasks waiting for resources (JVM)

To The set of all tasks being optimized

S The set of all segments being distributed

Wn The set of segments assigned to task n
τ The current estimated finishing time of all tasks with the new

rebalancing

Dr
n The unprocessed workload for task n

De
s The processed workload for segment s

Dr
s The unprocessed workload for segment s

Rn The real time process rate of task n
Bn The estimated logical buffer size

ps Progress of segment s
ε Threshold in seconds to terminate Forseti

σ Threshold of progress score at which a task is included for op-
timization

ω Threshold of progress score at which a task is excluded from
optimization

estimates the execution time of tasks and redistributes workload
accordingly. Further, relying on Forseti, we propose a greedy algo-
rithm which aims to minimize the job execution time.

4.1. Overview

We design Forseti to be applicable to any multi-phase DISC
framework. Forseti assumes a job consists of tasks that run on par-
allel unrelated machines. Each task uses data within boundaries,
reads it as records, generates key-value pairs and passes the pairs
to the next phase. In addition, Forseti makes no assumption about
a priori knowledge of the cluster state nor does it require to know
about job requirements and configuration upon job submission (or
past runs). Moreover, Forseti exploits “JVM reuse”, and seamlessly
redistributes data among running tasks without interruption.

Every task in a DISC framework is given a boundary which de-
fines the start and end of a segment (or split) to be processed.
A task completes when the segment end is reached. Tasks use a
pointer to specify the start byte offset of a record. The key of a
record is the byte offset at which it is located, and the value is
the data present in this record. The pointer is incremented by the
record size in order to point to the next record. For instance, the
start byte offset of the first record is 0, and if we assume the first
record size is 100 KB, the start byte offset of the second record is
(100 KB + 1B).

Forseti uses the idea of boundaries limits and pointers to spec-
ify the data to be processed by every task. Forseti defines dis-
tributed data as a set of segments, which have start and end byte
offsets. Upon a job submission, every task is assigned one seg-
ment, and it is roughly the same size for every task. Any part of
a segment can be specified by a start and end offset. As data is
redistributed among running tasks periodically upon a new task
completion, the number of segments assigned and their sizes are
changing based on the current state of tasks. Forseti creates a log-
ical buffer when optimizing distributed data. The buffer size of
every task is calculated based on the estimated finishing time. That
is, the master finds the amount of data that should be assigned to
every task so that all tasks finish roughly at the same time. This
data defines the buffer size in bytes.

Fig. 3 explains the concept of segments and how they are cre-
ated and distributed periodically among tasks. Let us suppose we

S. Alamro, T. Lan and S. Subramaniam Journal of Parallel and Distributed Computing 171 (2023) 14–23

Fig. 3. Segments Creation and Allocation.

Fig. 4. System architecture and steps taken upon new task completion.
have one file of size 300B to be processed. If the configured ini-
tial segment size is 100B, the master launches three tasks, each
of which processes 100B. The numbers shown on top and bottom
are the start and end byte offset. At time t , T2 finishes processing
the assigned data, while T1 and T3 are still processing data. Based
on the process rate, the master finds that the remaining data from
T1 can be split into three segments with different sizes. The blue
dashed rectangle represents the buffer (the estimated data to be
processed by τ). The segments are redistributed among the run-
ning tasks, where T1 processes 15B extra, T2 processes 30B and
T3 finishes processing its data and processes one segment from T1
(5B). Note that the master only sends the start and end byte off-
set to every designated task. Then, the tasks use their pointers to
point to the start byte offset of a segment achieving online rebal-
ancing.

4.2. Estimating new workload assignment of tasks

Forseti is designed based on the assumption that a priori knowl-
edge of the cluster capability and the submitted jobs configuration
are unknown. Thus, Forseti has to deal with and adapt to the di-
vergence in the cluster performance. Forseti relies on the real time
tasks’ progress rate and data remaining to be processed in order to
estimate the tasks’ finishing time. Moreover, Forseti takes into ac-
count the remaining data of all tasks when rebalancing workload.
That is, the remaining workload is redistributed among all tasks so
that the completion time is minimized.

To estimate the new amount of data to be assigned to a task,
we first need to calculate the estimated finishing time (τ) consid-
ering the total remaining data and the progress rate of all tasks. τ
is calculated as follows:

τ =
∑|Tr |

n=1 Dr
n

∑|To |
n=1 Rn

(1)

where Dr
n and Rn are the unprocessed workload and progress rate

of task n, respectively. We use the term buffer to represent the
logical available space in every task which can be filled with data.
Once τ is found, the estimated buffer size Bn available for task n
is calculated as follows:
18
Bn = Rn · τ . (2)

The buffer size plays an important role in defining the segments
limits.

4.3. Proposed dynamic load balancing algorithm

In Forseti, we use a greedy algorithm to fill buffers with data.
After a job submission, the master launches tasks with a pre-
configured segment (or split) size. Then, the master monitors every
task and waits for tasks to finish. Every task notifies the master
upon completion. The master waits for at least one task to finish
before optimizing workload among tasks. Fig. 4 shows the man-
ner in which the master reacts to a new finished task. Suppose
that a job is submitted to a cluster and is running. For the sake
of simplicity, suppose that the job has only three tasks and they
start running simultaneously. T1, T2 and T3 run on node N1, N2
and N3, respectively. The percentage shown represents the fraction
of data processed. The master polls the status of every task pe-
riodically and records the progress rate R based on the number
of bytes processed and elapsed time. Based on the first workload
assignment, T1 finishes first at t1, while T2 and T3 are still run-
ning. The dashed red rectangle represents the unprocessed data
Dr

2 and Dr
3 in T2 and T3, respectively. Now, the master needs to

redistribute the workload in T2 and T3 among all three tasks so
that all tasks finish roughly at the same time with the new assign-
ment. The master first estimates the finishing time τ of all tasks
based on the remaining workload and the real time progress rate.
That is, the master tries to find the amount of data that should
be given to every task based on its progress rate so that they all
finish roughly at the same time. The blue dashed rectangle repre-
sents the estimated buffer size after workload taken from T2 and
T3 is redistributed. Once τ is found, the master notifies every task
about the new start and end offsets of segments assigned to be
processed. After the first load rebalancing, T2 finishes first at t2.
This indicates that T2, which suffers temporal slowdown at t1, is
able to finish before τ . Now, the master estimates a new finishing
time τ ′ , and the unprocessed data of T1 is divided among T1 and
T2 based on the current progress rate, while T3 is left untouched
as it is about to finish processing. If all tasks are about to finish,
and no more data can be redistributed, the master checks if there

S. Alamro, T. Lan and S. Subramaniam Journal of Parallel and Distributed Computing 171 (2023) 14–23
are tasks waiting to be launched. If found, their data gets redis-
tributed in the same manner among running tasks, and they get
removed from the system. This process eliminates the JVM launch-
ing time overhead and exploits “JVM reuse” of running tasks. This
optimization is repeated periodically upon a new task completion
until all tasks finish processing or τ becomes very small. Forseti
ensures seamless execution throughout the lifetime of a task. Tasks
only need to point to the right start offset of a segment and con-
tinue processing from there. If a task’s progress rate indicates that
it can process more data after completion and before τ , the mas-
ter assigns new segments to be processed right after completing
the current workload.

Algorithm 1: unprocessedSegs().
1: S = {∅}
2: for n ∈ Tr do
3: s = Wn[c] \\c: Current segment being processed
4: \\Check progress of current segment
5: if σ > ps ≥ ω then
6: To .append(n)

7: S.append(Wn[c + 1 :])
8: else if ps < ω then
9: S.append(Wn[c + 1 :]) \\Add all unprocessed segments

10: end if
11: end for
12: for n ∈ To do
13: s = Wn[c]
14: Bn = Rn · τ \\Calculate estimated buffer size for task n
15: \\Add remaining unprocessed workload for segment c
16: if Dr

s − Bn > 0 then
17: κ = s.start + De

s + Bn

18: S.append([κ, s.end])
19: else
20: Bn = Bn − Dr

s
21: end if
22: end for

In order to redistribute data among tasks, we first need to find
the set of segments S , which includes all non-processed segments
previously assigned to tasks, as well as the remaining data from
the current segment being processed that will not be processed
after τ . We also need to find the set of tasks To which make
enough progress, and an accurate process rate is recorded. Algo-
rithm 1 explains how segments are collected from running tasks
(already started processing). Steps (2-10) check the progress of the
current segment being processed, s, and add all remaining unpro-
cessed segments to S . In our optimization, we only consider tasks
that make enough progress (more than ω) and there is more than
σ of data remaining in the current segment. The remaining seg-
ments of the task which is about to finish processing the current
segment are excluded. Steps (11-20) calculate the buffer size and
check whether a task can process more data after finishing the
current segment.

Algorithm 2 works in a greedy manner to fill the logical tasks’
buffer with segments. Forseti always prioritizes re-balancing the
workload of running tasks. The unscheduled tasks, Tw , are only
considered if there are no segments to be redistributed from the
running tasks. Steps (1-8) assign the initial segment assigned to
an unscheduled task to an idle task (a finished task waiting for
more data to be processed). Once the segment is assigned, the un-
scheduled task gets removed from the cluster. Steps (9-35) assign
segments from S to all tasks in To , where T f ∪ Tr = To . The algo-
rithm assigns segments to a task until no more space is available
for data to be processed before τ . If a whole segment cannot be
assigned to a task, it gets split between two or more tasks. Algo-
rithm 3 shows when Forseti allows tasks to commit their results. If
τ is less than or equal to a threshold, all tasks commit their results
and Forseti terminates.
19
Algorithm 2: segmentsAssign().
1: if S = {∅} then
2: if Tw �= {∅} then
3: \\Assign unscheduled tasks’ workload to idle tasks
4: for v ∈ min(|Tw |, |T f |) do
5: x = Tw [v]
6: y = T f [v]
7: Wy .append(Wx)

8: end for
9: end if

10: else
11: while To �= {∅} do
12: T0 = To[0]
13: W0 = []
14: while B0 > 0 do
15: s = S[0]
16: y = s.end − s.start\\Data size of segment s
17: while y > 0&B0 > 0 do
18: \\Check if whole segment fits in buffer
19: if B0 ≥ y then
20: W0.append(s)
21: B0 = B0 − y\\Decrease buffer size
22: y = 0
23: S = S − {s}\\Remove segment s from S
24: \\Remove task T0 from To if buffer is filled
25: if B0 == 0 then
26: To = To − {T0}
27: end if
28: else
29: \\Fill the remaining buffer space
30: z = s.start
31: W0.append([z, z + B0])
32: s.start = z + B0

33: y = y − B0

34: To = To − {T0}
35: end if
36: end while
37: end while
38: end while
39: end if

Algorithm 3: commForseti().
1: \\Commit if no more segments in S and no more tasks waiting
2: if S = {∅}&Tw = {∅}&τ > ε then
3: \\Ask every finished task to commit
4: for n ∈ T f do
5: n.commit = true
6: end for
7: else if τ ≤ ε then
8: n.commit = true, ∀n ∈ T
9: end if

5. Forseti implementation

While Forseti works with any distributed computing frame-
work, to evaluate its performance in this paper, we implement
Forseti using Hadoop YARN, which includes an RM (Resource Man-
ager), an AM (Application Master) for each application (job) as well
as an NM (Node Manager within each node). The AM negotiates
resources from the RM and works with the NMs to execute and
monitor an application’s tasks. Forseti is job-independent, so the
algorithm is implemented in the AM to estimate τ and redistribute
workload among all tasks of a job accordingly.

The Forseti load balancing algorithm is centralized and imple-
mented in the AM. The AM keeps tracking the segments assigned
to every task. The AM runs the algorithm upon a new task finish-
ing. Instead of relying on progress score sent from tasks to AM,
when load re-balancing is needed, we let the AM poll for the real-
time progress rate from tasks and the current segment being pro-
cessed. We create a new thread for every task which is in charge
of communicating with the AM and updating it with current status

S. Alamro, T. Lan and S. Subramaniam Journal of Parallel and Distributed Computing 171 (2023) 14–23

Fig. 5. Comparisons of Forseti, One-to-One, SkewTune and Hadoop in terms of average completion time using three benchmarks: (a) WordCount (b) Classification (c) Adjacency
List. The heterogeneity level is 1-2-3.
upon request. The outputs of all segments are concatenated before
a task commits the results and are fetched by reduce tasks.

One challenge confronting us is that when calculating the start
byte offset of a segment, the AM does not know about the start
offset of records within a segment. These offset values are only
known to tasks when processing segments. Because of the result-
ing fraction from Rn and τ , there is no guarantee that the start
byte offset of a segment always leads to the start byte offset of a
record. Recall that the start byte offset of a record is the key, and
the value is the data present in this record. Thus, the start byte
offset usually points to the value of a record, not the key. There-
fore, we let tasks always skip the first record of new segments and
point to the start byte offset of the second record upon process-
ing. The skipped part will be the last record to be processed by
whoever gets assigned the corresponding segment.

6. Evaluation

The performance of Forseti is evaluated on a local cluster as
well as Amazon EC2 cloud. In this section, we present the evalua-
tion results. We first give a description of the experimental setup,
and then we show our results comparing Forseti with SkewTune
and Hadoop. We also compare Forseti with a simple heuristic
which works as one-to-one mapping. That is, upon completion of a
new task f , we find the slowest running task l that will finish the
latest, based on its progress. Then, the remaining data is divided
among these two tasks such that they both finish at the same time.
The slow task is notified to process Bl more bytes, while the idle
task processes the remaining. Bl is calculated as follows:

Bl = Rl · Dr
l

Rl + R f
(3)

where Dr
l , Rl , and R f are the remaining unprocessed data from the

slow task, the process rate of the slow task and the process rate of
the idle (finished) task, respectively.

6.1. Experimental setup

Forseti is deployed on a local cluster and Amazon EC2 consist-
ing of 101 nodes - one master and 100 slaves, and 145 nodes -
one master and 144 slaves, respectively. All local servers are con-
nected with a Gigabit Ethernet switch, each of which is Intel(R)
Xeon(R) CPU E5-2630 v3 @ 2.40 GHz and run on Ubuntu 16.04.6
LTS operating system. We set ω, σ and ε equal to 5%, 90% and 15
seconds, respectively. These variables help determine whether the
20
segment currently processed should be included in the optimiza-
tion. If not chosen properly, some segments might get processed
more than once. Note that the variables can be environment- and
applications-specific values. We use Docker [31] platform to cre-
ate a cluster with different levels of heterogeneity. In our cluster,
each node is capable of running one task at a time. Forseti is
evaluated by using popular benchmarks, TermVector (TV), Word-
Count (WC) and WordMean (WM) as well as Machine Learning
benchmarks such as Histogram Ratings (HR), Classification (CL) and
KMeans (KM) clustering benchmarks, and Graph processing bench-
mark such as Adjacency List (AL) [12]. The figures show average
completion times of 20 jobs as well as the maximum and mini-
mum of these completion times.

6.2. Results

Fig. 5 compares the average completion time of Forseti with
One-to-One, SkewTune and Hadoop for various job sizes and
benchmarks. In this figure, we fix the level of heterogeneity to 1-
2-3 ratio (i.e., CPU speeds are 1x, 2x and 3x of a base speed) and
run jobs with different workload size (i.e., 10G, 30G, 50G and 100G
bytes of data) one by one and measure the completion time for
each job. The figures show that Forseti outperforms all strategies
and reduces the average completion time. The figures also show
that even with large data size, Forseti is able to exploit the dis-
similarity in progress rate among tasks and redistributes workload
efficiently. We notice in this figure that the gap between Forseti
and SkewTune stays roughly the same with different data size, but
Forseti still provides better results. However, the difference in com-
pletion time between Forseti and Hadoop increases as we increase
the job size. This demonstrates Forseti’s superiority in dealing with
large jobs.

In Fig. 6, we compare the average completion time of Forseti
with One-to-One, SkewTune and Hadoop for different heterogene-
ity levels. In this figure, we fix the job size and run the bench-
marks with various cluster settings, i.e., 1-2, 1-2-3, 1-2-3-4 ratio of
CPU speed. As in the previous experiment, jobs are presented one
by one to the system, and the completion time is measured and
the average taken over all jobs. The two benchmarks, KM and TV,
process 30G and 10G bytes of data, respectively. Clearly, we can
see that as we increase the heterogeneity level, Forseti is able to
maintain a superior performance difference compared with other
strategies. In this figure, we can see that the gaps with Skew-
Tune and Hadoop keep increasing as we increase the heterogeneity
level. This is because Hadoop and SkewTune make no assumptions
about the fluctuation in processing speed in the cluster. The re-

S. Alamro, T. Lan and S. Subramaniam Journal of Parallel and Distributed Computing 171 (2023) 14–23

Fig. 6. Comparisons of Forseti, One-to-One, SkewTune and Hadoop in terms of average completion time using Kmeans and TermVector benchmarks with different level of
heterogeneity: (a) 1-2 (b) 1-2-3 (c) 1-2-3-4.

Fig. 7. Comparisons of Forseti, One-to-One, SkewTune and Hadoop in terms of average completion time using Histogram Ratings and WordMean benchmarks with different
job contention levels: (a) Low (b) Medium (c) High.
sults also show that, even with a highly heterogeneous system,
Forseti shows to be more appealing compared with SkewTune and
Hadoop. Forseti can adapt and adjust to the current state of a sys-
tem regardless of benchmarks and the discrepancy in progress rate.

In the previous two experiments, jobs were presented one by
one to the system and did not compete with each other for system
resources; the only contention for resources is among the tasks
of the same job. In the next experiment, we allow multiple jobs
to compete with each other. Here, we present j jobs simultane-
ously to the system and the tasks of these j jobs compete with
each other. Note that if there are not enough VMs to launch all
the tasks of these jobs, some will have to be scheduled after other
tasks finish. We measure the completion time of each job from the
time the job is presented to the system (i.e., including any waiting
time for launching the job’s tasks). Fig. 7 presents a comparison
of the average completion time of Forseti with One-to-One, Skew-
Tune and Hadoop for 3 different contention levels: Low (j = 2),
medium (j = 3), and high (j = 5) contention levels. In this exper-
iment, we run two benchmarks, HR and WM, which process 30G
and 10G bytes of data, respectively. The figures show that Forseti
notably outperforms all baselines and is able to reduce the aver-
age completion time. The figures also show that SkewTune fails to
perform well at high contention level especially for WM bench-
mark. That is, with high contention level, SkewTune is not able
21
to reduce the completion time of the jobs running on the cluster
and free resources for the jobs that need them. On the other hand,
Forseti’s outstanding performance is due to the fact that the pro-
cessing time of jobs is minimized, which makes resources available
for yet-to-be-scheduled jobs.

Fig. 8 depicts results from experiments on EC2. The figure
shows the average completion time of Forseti compared with
One-to-One, SkewTune and Hadoop for different benchmarks with
300 GB of workload. The results show that, even with large jobs,
Forseti significantly outperforms all baselines. This improvement
over other strategies is due to the fact that the assigned segments
are always reassigned if the AM finds that a new data distribution
is needed to minimize the completion time.

Table 2 shows the average re-optimization frequency (ARF) and
the average completion time (ACT) in seconds of Forseti for dif-
ferent workloads, benchmarks and heterogeneity levels. The table
shows that the re-optimization frequency is directly proportional
to the total completion time of a job. The table also shows jobs
with different characteristics and workload sizes require different
number of re-optimizations, and large job sizes do not always
provide enough information about jobs. Thus, Forseti makes no
assumption about the jobs and adapts to the current state of a
system accordingly.

S. Alamro, T. Lan and S. Subramaniam Journal of Parallel and Distributed Computing 171 (2023) 14–23
Fig. 8. Comparisons of Forseti, One-to-One, SkewTune and Hadoop in terms of av-
erage completion time with 300 GB of workload using Classification, KMeans and
Histogram Ratings benchmarks on Amazon EC2.

Table 2
Average number of re-optimizations of Forseti for different workloads, benchmarks
and heterogeneity levels.

ARF ACT(s)

10G (WC) 9 338
50G (WC) 14 568
30G (CL) 6 247
100G (CL) 10 400
1-2 (KM) 5 188
1-2-3 (KM) 6 248
1-2-3-4 (KM) 7 309
1-2 (TV) 5 236
1-2-3 (TV) 7 306
1-2-3-4 (TV) 8 368

7. Conclusion

In this paper, we present Forseti, a dynamic load balancing
framework that aims to adjust the workload assigned to each task
periodically according to their processing capability. Forseti makes
no assumption about the cluster state and optimizes workload
based on the current tasks’ state. It exploits “JVM reuse” by as-
signing more data to running tasks and avoiding launching new
tasks. In addition, Forseti does not need to investigate the cause
of discrepancy in execution time of tasks. We design Forseti to be
transparent to the map function and require no modification to the
function design. Our results show that Forseti can significantly re-
duce job completion time by up to 68% on average compared to
default Hadoop and 50% to SkewTune.

In the future work, we plan to investigate the network usage
and conduct deep analysis and its impact on the performance. Fur-
thermore, we aim to evaluate how our greedy algorithm scales as
the complexity increases.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing in-
terests:

Tian Lan reports was provided by The George Washington Uni-
versity. Tian lan reports a relationship with The George Washing-
ton University that includes: employment.
22
References

[1] F. Ahmad, S.T. Chakradhar, A. Raghunathan, T. Vijaykumar, Tarazu: optimizing
mapreduce on heterogeneous clusters, Comput. Archit. News 40 (2012) 61–74.

[2] Z. Ahmad, S. Duppala, R. Chowdhury, S. Skiena, Improved mapreduce load bal-
ancing through distribution-dependent hash function optimization, in: 2020
IEEE 26th International Conference on Parallel and Distributed Systems (IC-
PADS), IEEE, 2020, pp. 9–18.

[3] M.F. Aktas, P. Peng, E. Soljanin, Straggler mitigation by delayed relaunch of
tasks, SIGMETRICS Perform. Eval. Rev. (2018).

[4] S. Alamro, M. Xu, T. Lan, S. Subramaniam, Shed: optimal dynamic cloning to
meet application deadlines in cloud, in: 2018 IEEE International Conference on
Communications (ICC), 2018.

[5] S. Alamro, M. Xu, T. Lan, S. Subramaniam, Shed+: optimal dynamic specula-
tion to meet application deadlines in cloud, IEEE Trans. Netw. Serv. Manag. 17
(2020) 1515–1526.

[6] O. Alipourfard, H.H. Liu, J. Chen, S. Venkataraman, M. Yu, M. Zhang, Cherrypick:
adaptively unearthing the best cloud configurations for big data analytics, in:
14th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 17), 2017, pp. 469–482.

[7] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Har-
lan, E. Harris, Scarlett: coping with skewed content popularity in mapreduce
clusters, in: Proceedings of the Sixth Conference on Computer Systems, 2011,
pp. 287–300.

[8] G. Ananthanarayanan, A. Ghodsi, S. Shenker, I. Stoica, Effective straggler miti-
gation: attack of the clones, in: NSDI’13, 2013.

[9] G. Ananthanarayanan, S. Kandula, A.G. Greenberg, I. Stoica, Y. Lu, B. Saha, E.
Harris, Reining in the outliers in map-reduce clusters using mantri, in: OSDI’10,
2010.

[10] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, E. Thereska, End-to-end perfor-
mance isolation through virtual datacenters, in: 11th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 14), 2014, pp. 233–248.

[11] J.C. Anjos, I. Carrera, W. Kolberg, A.L. Tibola, L.B. Arantes, C.R. Geyer, Mra++:
scheduling and data placement on mapreduce for heterogeneous environments,
Future Gener. Comput. Syst. 42 (2015) 22–35.

[12] Apache Software Foundation, Puma: Purdue maprduce benchmark suite,
https://engineering .purdue .edu /~puma /pumabenchmarks .htm.

[13] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena, G. O’Shea, Chatty
tenants and the cloud network sharing problem, in: Presented as Part of the
10th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 13), 2013, pp. 171–184.

[14] W. Chen, J. Rao, X. Zhou, Addressing performance heterogeneity in mapreduce
clusters with elastic tasks, in: 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), IEEE, 2017, pp. 1078–1087.

[15] D. Cheng, J. Rao, Y. Guo, X. Zhou, Improving mapreduce performance in hetero-
geneous environments with adaptive task tuning, in: Proceedings of the 15th
International Middleware Conference, 2014, pp. 97–108.

[16] E. Coppa, I. Finocchi, On data skewness, stragglers, and mapreduce progress
indicators, in: Proceedings of the Sixth ACM Symposium on Cloud Computing,
2015, pp. 139–152.

[17] S. Fu, R. Mittal, L. Zhang, S. Ratnasamy, Fast and efficient container startup at
the edge via dependency scheduling, in: 3rd {USENIX} Workshop on Hot Topics
in Edge Computing (HotEdge 20), 2020.

[18] R. Gandhi, D. Xie, Y.C. Hu, {PIKACHU}: how to rebalance load in optimiz-
ing mapreduce on heterogeneous clusters, in: Presented as Part of the 2013
{USENIX} Annual Technical Conference ({USENIX}{ATC} 13), 2013, pp. 61–66.

[19] J.R. Gunasekaran, P. Thinakaran, N.C. Nachiappan, M.T. Kandemir, C.R. Das, Fifer:
tackling resource underutilization in the serverless era, in: Proceedings of the
21st International Middleware Conference, 2020, pp. 280–295.

[20] H. Herodotou, F. Dong, S. Babu, No one (cluster) size fits all: automatic cluster
sizing for data-intensive analytics, in: Proceedings of the 2nd ACM Symposium
on Cloud Computing, 2011, pp. 1–14.

[21] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F.B. Cetin, S. Babu, Starfish: a
self-tuning system for big data analytics, in: Cidr, 2011, pp. 261–272.

[22] S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, S. Wu, Maestro: replica-aware map
scheduling for mapreduce, in: Cluster, Cloud and Grid Computing (CCGrid),
2012 12th IEEE/ACM International Symposium on, IEEE, 2012, pp. 435–442.

[23] K. Jang, J. Sherry, H. Ballani, T. Moncaster, Silo: predictable message latency
in the cloud, in: Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, 2015, pp. 435–448.

[24] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken, The nature of data
center traffic: measurements & analysis, in: SIGCOMM’09, 2009.

[25] Y. Kwon, M. Balazinska, B. Howe, J. Rolia, Skew-resistant parallel processing of
feature-extracting scientific user-defined functions, in: Proceedings of the 1st
ACM Symposium on Cloud Computing, 2010, pp. 75–86.

[26] Y. Kwon, M. Balazinska, B. Howe, J. Rolia, A study of skew in mapreduce appli-
cations, in: Open Cirrus Summit 11, 2011.

[27] Y. Kwon, M. Balazinska, B. Howe, J. Rolia, Skewtune: mitigating skew in mapre-
duce applications, in: Proceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data, 2012, pp. 25–36.

http://refhub.elsevier.com/S0743-7315(22)00191-5/bib456B124F7B6EE23C77899B10AC2AC812s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib456B124F7B6EE23C77899B10AC2AC812s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibFBB8B54990843329945E5209330B3BCDs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibFBB8B54990843329945E5209330B3BCDs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibFBB8B54990843329945E5209330B3BCDs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibFBB8B54990843329945E5209330B3BCDs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibA42527345B083B8A015905F2B1A383A0s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibA42527345B083B8A015905F2B1A383A0s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibAF3D0343A8CB0F9EC1E2724C090DFA36s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibAF3D0343A8CB0F9EC1E2724C090DFA36s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibAF3D0343A8CB0F9EC1E2724C090DFA36s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib7BE2F96ED072E617373A45DEC19B2E29s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib7BE2F96ED072E617373A45DEC19B2E29s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib7BE2F96ED072E617373A45DEC19B2E29s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib587AAF66B8C2C06DA0AEA28815EB9F77s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib587AAF66B8C2C06DA0AEA28815EB9F77s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib587AAF66B8C2C06DA0AEA28815EB9F77s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib587AAF66B8C2C06DA0AEA28815EB9F77s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibA9E9D1F53B1185DFBF14FF27FE5D612Bs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibA9E9D1F53B1185DFBF14FF27FE5D612Bs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibA9E9D1F53B1185DFBF14FF27FE5D612Bs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibA9E9D1F53B1185DFBF14FF27FE5D612Bs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibF862EE5DE9BF4C84775137D046034BA5s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibF862EE5DE9BF4C84775137D046034BA5s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibF3A05BB2EE464922E3383869ACE7CD72s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibF3A05BB2EE464922E3383869ACE7CD72s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibF3A05BB2EE464922E3383869ACE7CD72s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib9F729FEE806796C80AD806017494C667s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib9F729FEE806796C80AD806017494C667s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib9F729FEE806796C80AD806017494C667s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib2245FEE6210F66EBE9F87CF0E2577C3Ds1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib2245FEE6210F66EBE9F87CF0E2577C3Ds1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib2245FEE6210F66EBE9F87CF0E2577C3Ds1
https://engineering.purdue.edu/~puma/pumabenchmarks.htm
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib17549A886247D184CF3A59BEB5812DE4s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib17549A886247D184CF3A59BEB5812DE4s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib17549A886247D184CF3A59BEB5812DE4s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib17549A886247D184CF3A59BEB5812DE4s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib70EA737F90153A87DEBDD9E8B6B85714s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib70EA737F90153A87DEBDD9E8B6B85714s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib70EA737F90153A87DEBDD9E8B6B85714s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib1FD944087AA4309F7CD93E4B8269F043s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib1FD944087AA4309F7CD93E4B8269F043s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib1FD944087AA4309F7CD93E4B8269F043s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib30BDB407C47208E7C4B4953B8FC0FF40s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib30BDB407C47208E7C4B4953B8FC0FF40s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib30BDB407C47208E7C4B4953B8FC0FF40s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib91F89EB9BE3532E0A7F718D8AE25BAD4s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib91F89EB9BE3532E0A7F718D8AE25BAD4s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib91F89EB9BE3532E0A7F718D8AE25BAD4s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib48E7B36E9595ADD2558AD964017E076Fs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib48E7B36E9595ADD2558AD964017E076Fs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib48E7B36E9595ADD2558AD964017E076Fs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib778A83A4E9529816170823546489DA3As1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib778A83A4E9529816170823546489DA3As1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib778A83A4E9529816170823546489DA3As1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibDE2F88F92973338EB4914795E59598C7s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibDE2F88F92973338EB4914795E59598C7s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibDE2F88F92973338EB4914795E59598C7s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib313297ACB06F06E796C8CB4FD0684EEDs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib313297ACB06F06E796C8CB4FD0684EEDs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibF449CD87F183B94800CB4C72892032DBs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibF449CD87F183B94800CB4C72892032DBs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibF449CD87F183B94800CB4C72892032DBs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibEB7AAD7715CA569494A3778EB3E44E28s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibEB7AAD7715CA569494A3778EB3E44E28s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibEB7AAD7715CA569494A3778EB3E44E28s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibDDD8B9417B7581B30875D8E858D2D67Bs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibDDD8B9417B7581B30875D8E858D2D67Bs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib885B31CE67310F48BDEAB3F9CDE0AB29s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib885B31CE67310F48BDEAB3F9CDE0AB29s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib885B31CE67310F48BDEAB3F9CDE0AB29s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibBF1413EFDD0F467E344AF901EB3779C8s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibBF1413EFDD0F467E344AF901EB3779C8s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibC85089D5D77DC6ABD0364FBC7B6BCBDBs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibC85089D5D77DC6ABD0364FBC7B6BCBDBs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibC85089D5D77DC6ABD0364FBC7B6BCBDBs1

S. Alamro, T. Lan and S. Subramaniam Journal of Parallel and Distributed Computing 171 (2023) 14–23
[28] Y. Le, J. Liu, F. Ergün, D. Wang, Online load balancing for mapreduce with
skewed data input, in: IEEE INFOCOM 2014-IEEE Conference on Computer
Communications, IEEE, 2014, pp. 2004–2012.

[29] C.W. Lee, K.Y. Hsieh, S.Y. Hsieh, H.C. Hsiao, A dynamic data placement strategy
for hadoop in heterogeneous environments, Big Data Res. 1 (2014) 14–22.

[30] D. Lion, A. Chiu, H. Sun, X. Zhuang, N. Grcevski, D. Yuan, Don’t get caught
in the cold, warm-up your {JVM}: understand and eliminate {JVM} warm-up
overhead in data-parallel systems, in: 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 383–400.

[31] D. Merkel, Docker: lightweight Linux containers for consistent development
and deployment, Linux J. 2014 (2) (2014).

[32] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.G. Chun, Making sense
of performance in data analytics frameworks, in: 12th {USENIX} Sympo-
sium on Networked Systems Design and Implementation ({NSDI} 15), 2015,
pp. 293–307.

[33] K. Ousterhout, P. Wendell, M. Zaharia, I. Stoica, Sparrow: distributed, low la-
tency scheduling, in: Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, 2013, pp. 69–84.

[34] E. Pettijohn, Y. Guo, P. Lama, X. Zhou, User-centric heterogeneity-aware mapre-
duce job provisioning in the public cloud, in: 11th International Conference on
Autonomic Computing ({ICAC} 14), 2014, pp. 137–143.

[35] R. Vernica, A. Balmin, K.S. Beyer, V. Ercegovac, Adaptive mapreduce using
situation-aware mappers, in: Proceedings of the 15th International Conference
on Extending Database Technology, 2012, pp. 420–431.

[36] B. Wang, J. Jiang, G. Yang, Actcap: accelerating mapreduce on heterogeneous
clusters with capability-aware data placement, in: 2015 IEEE Conference on
Computer Communications (INFOCOM), IEEE, 2015, pp. 1328–1336.

[37] D. Wang, G. Joshi, G.W. Wornell, Efficient straggler replication in large-scale
parallel computing, ACM Trans. Model. Perform. Eval. Comput. Syst. (TOMPECS)
4 (2019) 1–23.

[38] W. Wang, L. Ying, Data locality in mapreduce: a network perspective, Perform.
Eval. 96 (2016) 1–11.

[39] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares, X. Qin, Improv-
ing mapreduce performance through data placement in heterogeneous hadoop
clusters, in: 2010 IEEE International Symposium on Parallel & Distributed Pro-
cessing, Workshops and Phd Forum (IPDPSW), IEEE, 2010, pp. 1–9.

[40] F. Xu, F. Liu, H. Jin, Heterogeneity and interference-aware virtual machine pro-
visioning for predictable performance in the cloud, IEEE Trans. Comput. 65
(2015) 2470–2483.

[41] H. Xu, W.C. Lau, Optimization for speculative execution in big data processing
clusters, IEEE Trans. Parallel Distrib. Syst. 28 (2017) 530–545.

[42] M. Xu, S. Alamro, T. Lan, S. Subramaniam, Laser: a deep learning approach
for speculative execution and replication of deadline-critical jobs in cloud, in:
Computer Communication and Networks (ICCCN), 2017 26th International Con-
ference on, IEEE, 2017, pp. 1–8.

[43] M. Xu, S. Alamro, T. Lan, S. Subramaniam, Chronos: a unifying optimization
framework for speculative execution of deadline-critical mapreduce jobs, in:
2018 IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), IEEE, 2018.

[44] D. Yang, W. Rang, D. Cheng, Mitigating stragglers in the decentralized training
on heterogeneous clusters, in: Proceedings of the 21st International Middle-
ware Conference, 2020, pp. 386–399.

[45] M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz, I. Stoica, Improving mapreduce
performance in heterogeneous environments, in: OSDI’08, 2008.

[46] Z. Zhang, L. Cherkasova, B.T. Loo, Exploiting cloud heterogeneity to optimize
performance and cost of mapreduce processing, ACM SIGMETRICS Perform.
Eval. Rev. 42 (2015) 38–50.

Sultan Alamro received the B.S. degree in Elec-
tronics and Communications Engineering from Qassim
University, Saudi Arabia in 2008, the M.S. degree in
Electrical Engineering from the Polytechnic Institute
of New York University, Brooklyn, NY, USA in 2013,
and the Ph.D. degree in Electrical Engineering from
the George Washington University. His research inter-
ests include big data, cloud computing and resource
optimization.

Tian Lan (S’03-M’10-SM’20) received the B.A.Sc.
degree from the Tsinghua University, China in 2003,
the M.A.Sc. degree from the University of Toronto,
Canada, in 2005, and the Ph.D. degree from the
Princeton University in 2010. Dr. Lan is currently a
full Professor of Electrical and Computer Engineering
at the George Washington University. His research in-
terests include network optimization and algorithms,
machine learning, cyber security, cloud/edge comput-

ing. Dr. Lan received many recognitions including 2021 Meta Research
Award, 2019 SecureComm Best Paper Award, 2018 SEAS Faculty Recogni-
tion Award at GWU, 2017 Hegarty Faculty Innovation Award, 2015 AT&T
VURI Award, 2012 IEEE INFOCOM Best Paper Award, 2010 Wu Prizes
for Excellence at Princeton University, 2009 IEEE GLOBECOM Best Paper
Award, and 2008 IEEE Signal Processing Society Best Paper Award. He is
currently serving as an Associate Editor at IEEE/ACM Transactions on Net-
working and as the IEEE R2 (Eastern US) Regional Chapter Coordinator.

Suresh Subramaniam (S’95-M’97-SM’07-F’15) re-
ceived the Ph.D. degree in electrical engineering from
the University of Washington, Seattle, in 1997. He is
Professor of Electrical and Computer Engineering and
Vice Provost for Graduate and Postdoctoral Affairs at
the George Washington University, Washington, DC.
His research interests are in the architectural, algo-
rithmic, and performance aspects of communication
networks, with current emphasis on optical networks,

cloud and edge computing, IoT, and data center networks. He has pub-
lished about 250 peer-reviewed papers in these areas, and has co-edited
3 books on optical networking. He has served as TPC Chair for several con-
ferences including Globecom 2006, 2016, and 2022 ONS, LANMAN 2014,
INFOCOM 2013, ANTS 2008, and ICC 2007 ONS. He is or has been on
the editorial boards of 7 journals including the IEEE/ACM Transactions on
Networking and the IEEE/OSA Journal of Optical Communications and Net-
working. He served as the Chair of the IEEE ComSoc Optical Networking
Technical Committee in 2012-2013, and as an IEEE ComSoc Distinguished
Lecturer during 2018-2021. He is a recipient of the 2017 SEAS Distin-
guished Researcher Award at GWU. He is a Fellow of the IEEE.
23

http://refhub.elsevier.com/S0743-7315(22)00191-5/bib55F053219136D7B418A1738DDA94B25As1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib55F053219136D7B418A1738DDA94B25As1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib55F053219136D7B418A1738DDA94B25As1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib995D0CD2F83B1BAE49EA43E9EB6DFC64s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib995D0CD2F83B1BAE49EA43E9EB6DFC64s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibFCD4154E9925C6A210D480BB5FF70683s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibFCD4154E9925C6A210D480BB5FF70683s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibFCD4154E9925C6A210D480BB5FF70683s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibFCD4154E9925C6A210D480BB5FF70683s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib9A535DEACCF2C46B40C57B11ED921651s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib9A535DEACCF2C46B40C57B11ED921651s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib55666023FE93DB1A26D050041E4D6FF9s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib55666023FE93DB1A26D050041E4D6FF9s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib55666023FE93DB1A26D050041E4D6FF9s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib55666023FE93DB1A26D050041E4D6FF9s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibA43F3A079F8F422C48677F91D1740143s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibA43F3A079F8F422C48677F91D1740143s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibA43F3A079F8F422C48677F91D1740143s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibBCCD1C24269740FA231FD0BE6635CC5Fs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibBCCD1C24269740FA231FD0BE6635CC5Fs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibBCCD1C24269740FA231FD0BE6635CC5Fs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibAF38C98441C14F75117AD53267FCDE69s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibAF38C98441C14F75117AD53267FCDE69s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibAF38C98441C14F75117AD53267FCDE69s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibD33D6BDCDD5171244C801FD919846348s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibD33D6BDCDD5171244C801FD919846348s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibD33D6BDCDD5171244C801FD919846348s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib5FDDC27435FB7E55BF7B63629FD4E4E6s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib5FDDC27435FB7E55BF7B63629FD4E4E6s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib5FDDC27435FB7E55BF7B63629FD4E4E6s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib57CD6D2EB43CB6CB9F228F817F5BF278s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib57CD6D2EB43CB6CB9F228F817F5BF278s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibF8BE65E42ECE1CD2C2E9103570886780s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibF8BE65E42ECE1CD2C2E9103570886780s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibF8BE65E42ECE1CD2C2E9103570886780s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibF8BE65E42ECE1CD2C2E9103570886780s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibCEA74DB0691B6F05CA6A41371E49B68Cs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibCEA74DB0691B6F05CA6A41371E49B68Cs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibCEA74DB0691B6F05CA6A41371E49B68Cs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib60F5C7233B9B156ED35FF8F356D81630s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib60F5C7233B9B156ED35FF8F356D81630s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibD6184F3329E1973B9E4ABD5AAFF56854s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibD6184F3329E1973B9E4ABD5AAFF56854s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibD6184F3329E1973B9E4ABD5AAFF56854s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibD6184F3329E1973B9E4ABD5AAFF56854s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibF0E794A1C559E4ADD54716511B0AB879s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibF0E794A1C559E4ADD54716511B0AB879s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibF0E794A1C559E4ADD54716511B0AB879s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibF0E794A1C559E4ADD54716511B0AB879s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib7BE72A7FC476B1CBDA958DBF9EF9C2EFs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib7BE72A7FC476B1CBDA958DBF9EF9C2EFs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bib7BE72A7FC476B1CBDA958DBF9EF9C2EFs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibBF5DB5382137F09C85C18AF6EE6AD000s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibBF5DB5382137F09C85C18AF6EE6AD000s1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibC0691DC96DF37F4A82E983D88817804Bs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibC0691DC96DF37F4A82E983D88817804Bs1
http://refhub.elsevier.com/S0743-7315(22)00191-5/bibC0691DC96DF37F4A82E983D88817804Bs1

	Forseti: Dynamic chunk-level reshaping for data processing on heterogeneous clusters
	1 Introduction
	2 Background and related work
	3 Motivations and problem statement
	4 Forseti design
	4.1 Overview
	4.2 Estimating new workload assignment of tasks
	4.3 Proposed dynamic load balancing algorithm

	5 Forseti implementation
	6 Evaluation
	6.1 Experimental setup
	6.2 Results

	7 Conclusion
	Declaration of competing interest
	References

