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Data-intensive computing frameworks typically split job workload into fixed-size chunks, allowing them 
to be processed as parallel tasks on distributed machines. Ideally, when the machines are homogeneous 
and have identical speed, chunks of equal size would finish processing at the same time. However, such 
determinism in processing time cannot be guaranteed in practice. Diverging processing times can result 
from various sources such as system dynamics, machine heterogeneity, and variable network conditions. 
Such variation, together with dynamics and uncertainty during task processing, can lead to significant 
performance degradation at job level, due to long tails in job completion time resulted from residual 
chunk workload and stragglers.
In this paper, we propose Forseti, a novel processing scheme that is able to reshape data chunk size on 
the fly with respect to heterogeneous machines and a dynamic execution environment. Forseti mitigates 
residual workload and stragglers to achieve significant improvement in performance. We note that Forseti
is a fully online scheme and does not require any a priori knowledge of the machine configuration nor 
job statistics. Instead, it infers such information and adjusts data chunk sizes at runtime, making the 
solution robust even in environments with high volatility. In its implementation, Forseti also exploits a 
virtual machine reuse feature to avoid task start-up and initialization cost associated with launching new 
tasks. We prototype Forseti on a real-world cluster and evaluate its performance using several realistic 
benchmarks. The results show that Forseti outperforms a number of baselines, including default Hadoop 
by up to 68% and SkewTune by up to 50% in terms of average job completion time.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Data-intensive computing frameworks (DISCs) have become the 
de facto standard for large-scale computing applications like web 
indexing and data mining, which often need to process up to 
petabytes of data on a daily basis. To enable distributed computing, 
these frameworks typically split job data into fixed size chunks and 
process them by parallel tasks on distributed machines that involve 
commodity hardware/software. Ideally, in a homogeneous environ-
ment with identical-speed machines and equal-size chunks, the 
chunk processing intervals would be perfectly aligned with each 
other, eliminating any possibility of residual workload and strag-
glers1 during job executions. However, such an ideal homogeneous 
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environment is not feasible in practice. It has been shown that the 
divergence and uncertainty in task processing times resulting from 
machine heterogeneity and execution dynamics could lead to sig-
nificant performance degradation of up to 75% [1] due to residual 
workload and stragglers.

This paper proposes a novel processing scheme called Forseti, 
which has the ability to reshape data chunk size processed by het-
erogeneous machines on the fly and to dynamically balance the 
workload assigned to parallel processing tasks. It effectively miti-
gates residual workload and stragglers during job execution, and as 
a result, leads to substantial job-level performance improvement, 
e.g., in terms of job average completion times and completion 
time tails. We note that the performance loss stemming from ma-
chine heterogeneity and execution dynamics has been identified 
by many researchers [45,1]. While existing work mainly focuses on
either optimizing DISC cluster configurations based on the specific 
applications and infrastructure available [20,21,34,6] or mitigat-
ing the negative effect of stragglers through task scheduling and 
placement [4,3,43,45,9], Forseti advocates an alternative approach 
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to reshape data chunk size and re-balance task workload in a dy-
namic, online fashion throughout job processing. This equips the 
system with the ability to automatically adapt its execution and 
workload partitioning in any heterogeneous, uncertain execution 
environment.

Taming residual workload and stragglers is a crucial task for 
any computing performance optimization. In practical DISC clus-
ters, heterogeneity can be caused by a number of reasons. First, 
the links within data centers suffer from congestion that could 
last up to several hundreds of seconds [24,38]. This congestion 
makes tasks run slow (i.e., straggle) as their execution time and 
progress fall behind the average execution time of other tasks. 
Second, cloud providers use virtualization process to provide iso-
lation among jobs and tasks running simultaneously on the same 
machines. However, practical task scheduling and isolation mech-
anisms either require precise job processing models or are too 
coarse-grained. Third, computing nodes are typically composed of 
commodity parts, thereby becoming dissimilar in processing speed. 
Last, heterogeneity in execution time can occur due to load im-
balance assigned or created by different tasks [25,26]. Thus, the 
divergence in task execution speed on heterogeneous machines is 
considered as the main issue that leads to excessive worker idle-
ness (and thus resource under-utilization) in the cluster along with 
the creation of stragglers. To better understand the issue of hetero-
geneity and its impact on detecting stragglers on real systems, con-
sider for instance the performance of a map-reduce job in Fig. 1(a). 
The figure shows the execution time of map and reduces tasks of 
Hadoop for a WordCount benchmark running on a heterogeneous 
cluster. In this experiment, we set the level of heterogeneity in 
the cluster to 1-2-3 ratio (i.e., CPU speeds are 1x, 2x and 3x of a 
base speed). Initially, each map task is assigned 128 MB of data 
to process. It can be clearly seen that Hadoop creates discrepancy 
in performance among running tasks. Hadoop fails to adapt to the 
heterogeneity, even if speculation mechanism is enabled.

To reshape data chunk size and re-balance task workload, 
Forseti adapts to the divergence in task execution times and 
dynamically redistributes workload through an efficient pointer-
rebalancing mechanism according to the underlying nodes’ pro-
cessing speeds. Forseti estimates the progress rate of different 
tasks/chunks, obtain a prediction of task completion times, and 
redistributes workload accordingly to minimize any potential resid-
ual work or stragglers. Forseti aims to reassign unprocessed data to 
machines so that the completion time of a job is minimized. As a 
result, this mechanism also ensures that the overall energy con-
sumption/cost is minimized. Fig. 1(b) shows how Forseti is able to 
reduce the overall completion time by 56% compared with Hadoop. 
We emphasize that Forseti does not require any a priori knowledge 
of the machine configuration nor job statistics. Instead, it infers 
such information on the fly and adjusts data chunk sizes at run-
time, making the solution robust even in environments with high 
volatility.

While Forseti works with any distributed data processing 
framework, for the purpose of evaluating its performance, we im-
plement a prototype of Forseti on Hadoop map-reduce framework. 
The reshaping algorithm is implemented in the master, which 
monitors the progress rate of all tasks of a job, estimates the com-
pletion time, and redistributes the remaining workload accordingly. 
In order to minimize overall network overhead, Forseti checks for 
data locally before fetching data from remote nodes. We note that 
even when data is not local, we found in our experiments that the 
benefit of redistributing data outweighs any overhead caused by 
fetching non-local data [32]. Forseti exploits “JVM reuse” to recycle 
virtual machine container of completed tasks without termination 
and re-launching [30,17,33,19]. It effectively eliminates the JVM 
launching time overhead for new tasks. Moreover, Forseti does not 
need to know about the cause of divergence and uncertainty in 
15
Fig. 1. Timing flow of a WordCount job running map and reduce tasks: (a) Hadoop 
(b) Forseti.

execution time of tasks nor the exact job processing model. In ad-
dition, Forseti is designed to be transparent to the task function 
and requires no modification to the function design. Evaluating 
Forseti on real-world benchmarks, our results show that Forseti 
can significantly reduce job execution time by up to 68% on av-
erage compared to default Hadoop and 50% to SkewTune [27], a 
popular data rebalancing scheme. Moreover, the results show that 
Forseti can exploit the divergence and dynamics in progress rate 
among tasks and redistribute unprocessed workload efficiently. The 
findings substantiate our assertion that dynamic task/chunk re-
shaping mitigates the discrepancy in progress rate and minimizes 
the completion time of a job.

The rest of this paper is organized as follows. Section 2 presents 
related work, and Section 3 presents background and our moti-
vation. The design of Forseti is presented in Section 4, and the 
algorithm’s implementation is described in Section 5. Experimental 
results are presented in Section 6, and finally the paper is con-
cluded in Section 7.
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2. Background and related work

DISC frameworks, such as Hadoop (open source of MapRe-
duce) and Spark, have been widely employed in production sys-
tems. Such frameworks process large datasets (e.g., terabytes or 
petabytes of data) across huge clusters (e.g., hundreds or thou-
sands of nodes). The massive data are divided into and configured 
as fixed size chunks/blocks and then stored within an underlying 
distributed file system so as to support simultaneous processing of 
computation tasks across heterogeneous machines and clusters on 
the cloud. Generally, the execution flow is processed in a multi-
stage/phase fashion by using the output from one phase as the 
input to another phase. A phase is considered completed when 
tasks of the phase finish processing. Therefore, a slowdown in one 
phase due to some tasks running slow can lead to a late start of 
next phase.

The issue of heterogeneity and the way it creates stragglers 
have been extensively studied in the context of DISC frameworks. 
LATE [45] suggested that MapReduce has many limitations un-
der heterogeneous environments, mainly because straggler iden-
tification mechanisms that are in-built struggle to function prop-
erly within an environment that is heterogeneous. To address this 
challenge, better priority, scheduling, and identification techniques 
have been proposed. For instance, [5,37,9,8,41,22,3,4,43,42,44] at-
tempt to mitigate stragglers and enhance the speculation mech-
anism of default Hadoop. They have proposed novel strategies to 
track stragglers, launch speculative tasks reactively and proactively. 
Another study [1] found that the use of remote map tasks in-
creases network traffic when applied on fast machines significantly. 
However, one challenge to this technique is that the increased net-
work traffic could end up competing with shuffle between phases, 
a factor that causes deterioration in performance. They overcame 
this issue through undertaking communication-aware load balanc-
ing as it helps keep away from busty network traffic. This process 
is enhanced further by [18] through undertaking fresh key parti-
tioning schemes that have been established to improve Hadoop’s 
performance with heterogeneous clusters. A node-capability-aware 
data placement model was developed that distributes data among 
nodes according to their processing capabilities [36]. The issue of 
data skewness among tasks due to data placement in a heteroge-
neous cluster has been addressed in [27,25,28,14,35,18,11].

Going by most research findings, data skewness can be mit-
igated. Here, skewness refers to the imbalance of computational 
nodes and datasets among tasks. Various researchers [9,26,2] stud-
ied and analyzed different skews that appear in different types 
of applications. SkewTune [27] proposed a strategy which bal-
ances data distribution across different nodes. SkewTune repar-
titions stragglers’ data to capitalize on the idle task which just 
finished processing. In contrast to SkewTune, Forseti redistributes 
data assigned to all tasks on previous rounds upon a new task 
completion. FlexMap [14] tackled the heterogeneity issue and pro-
posed a scheme to create map tasks with small block size and 
increase the sizes according to node’s capabilities. The system ini-
tially launches a large number of maps with a small block size. 
However, this creates significant scheduling and starting overhead 
on the scheduler as well as resource contention. Moreover, it does 
not assume a shared cluster and fails to consider the JVM launch-
ing time overhead. Forseti aims to bypass the JVM launching over-
head and follows the policies imposed by the master.

There are other papers too which focus on skewness. [7] pro-
posed a framework that reproduces blocks according to their pop-
ularity. It aims to minimize interference on any running jobs that 
have been co-hosted under a similar cluster with an accurate 
prediction of file popularity. Another work [16] proposed a task 
progress indicator in order to deal with data skewness. [46,40,15]
proposed techniques to improve the performance of DISC frame-
16
Fig. 2. An illustrative example of the impact of a heterogeneous cluster on job com-
pletion time: (a) Default Hadoop. (b) Forseti.

works and jointly optimize performance and cost within heteroge-
neous cloud environments. [39,29] propose a dynamic data place-
ment scheme for a heterogeneous cluster. However, such scheme 
requires a priori knowledge about the capability of the cluster. [35]
proposed the concept of a virtual split, wherein its size changes 
(by adding more splits) as the mapper runs. Nonetheless, unlike 
Forseti, the assigned splits are never reassigned to other maps.

In multi-tenant data centers, resource sharing has become vital. 
Various studies have addressed the issue of unpredictable appli-
cation performance in shared clusters [10,23,13]. The lack of per-
formance isolation among users and applications leads to volatile 
application performance. The absence of proper isolation causes 
the task executions of DISC jobs to be stochastic. The uncertainty 
in their execution times affects the ability of straggler identifica-
tion mechanisms, and makes their decision to speculate (or not to 
speculate) a straggling task very challenging. Thus, discrepancy in 
performance is the norm of shared resources rather than the ex-
ception.

3. Motivations and problem statement

In this section, we start by briefly introducing the fundamen-
tals of DISC frameworks. We also discuss the ways through which 
the performance in heterogeneous settings gets severely affected 
by having routine parallelization in homogeneous clusters. Further, 
we show that the heavy-tailed behavior in the runtime distribution 
and large variation of execution times among tasks can be solved 
through an efficient dynamic load balancing.

DISC is the default for many data processing systems. Its im-
plementation can be better understood from two specific phases, 
namely map and reduce. In this context, input data and a record 
of transitional key or value pairs are formed via the map task. 
Every map task accesses and processes one split/chunk from a Dis-
tributed File System (DFS). On the other hand, these transitional 
key/value pairs are accumulated collectively and thereby passed to 
the reduce task through a communication stage named shuffle. A 
master monitors the progress of every task, and reports to the user 
about the job completion.
Case study. To demonstrate the problem considered in this paper, 
we perform a case study on Hadoop map-reduce framework. Con-
sider for instance a DISC job in a heterogeneous environment with 
four unrelated tasks, i.e., T = {T1, T2, T3, T4}, which are running 
in parallel on four different nodes (N1, N2, N3, N4). It can be seen 
(see Fig. 2(a)) that T1 and T2 took a long time compared with T3
and T4. The job cannot be considered complete until the process-
ing of T2 finishes. Moreover, N3 finished first and stayed idle for 
the rest of the time. This indicates the inefficiency of the entire 
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process. Fig. 2(b) illustrates how Forseti re-balances the remain-
ing workload among running nodes. Upon the completion of T3, 
i.e., T f = {T3}, at t1, Forseti checks the progress rate of all running 
tasks (i.e., T1, T2, T4) and redistributes the remaining data, i.e., Dr

1, 
Dr

2, and Dr
4, among the four tasks so they all finish at the same 

time (τ ). The figure shows that T4 can finish its remaining work-
load and process more data before τ . Thus, only data belonging 
to T1 and T2 are redistributed. This process is repeated until the 
completion of all tasks. This case can be extended to consider a 
multi-phase framework. However, Fig. 1 shows that the map phase 
can take up to 75% of the whole job completion time. Further, 
the figure shows that the shuffling starts right after a few map 
tasks complete. Nonetheless, the actual processing of reduce tasks 
is delayed until the last map task commits its output.2 Thus, since 
the execution of reduce tasks takes only about 5% of job execution 
time, Forseti is designed to optimize and re-balance workload map 
tasks only, which leads to overall reduction in job execution time. 
Moreover, Forseti assumes all tasks are independent and have no 
precedence among them, which is typical for map tasks.

In DISC frameworks, the presence of homogeneous task model 
cannot fulfill the load balancing obligations and thereby main-
tain an effective heterogeneous setting. Furthermore, the model 
is also incapable of adapting to the fluctuating performance due 
to shared resources. The divergence and uncertainty is a prob-
lem for performance optimization and scheduling. This is because 
they make it almost impossible to obtain a precise model of task 
processing times. Additionally, tasks are generally regarded as the 
procedure of collecting records through serial key-value pairs. Nev-
ertheless, as per the availability of any sort of application, such 
records might necessitate CPU as well as memory for process-
ing valuable data based on the runtime of the DISC cluster. The 
key is to quickly and accurately estimate the completion time of 
running tasks based on their progress rate, and redistribute load 
swiftly. Forseti is built to develop straggler and skew mitigation 
through an efficient load balancing scheme that dynamically rebal-
ances workload among running tasks. The objective is to reassign 
unprocessed data to machines so that makespan of a job (i.e., the 
time to complete all the tasks of a job) is minimized. The new load 
assignment aims to reallocate workload to machines according to 
their capabilities. Unlike [14,27], Forseti reallocates and rearranges 
data assigned to all tasks on previous rounds upon a new task 
completion. Failure to do so can lead to a significant degradation 
and violate the service level agreement (SLA) between users and 
cloud operators.

We now formally state the problem of minimizing the com-
pletion time of a job: Given a job (or a set of jobs) with a set 
of tasks T , our goal is to design a processing scheme that is ca-
pable of reshaping data chunk sizes assigned to each task on the 
fly with respect to cluster heterogeneity in order to minimize the 
job completion time. When a task finishes processing, the scheme 
takes all tasks’ associated unprocessed workload Dr

n , n ∈ T , and 
redistributes it proportionally based on the measured process rate 
Rn among all tasks. The goal is to balance the residual workload 
among the processing nodes and let all tasks finish at the same 
time with the new assignment. We present the details of the de-
sign of Forseti in the next section, and then show the significant 
improvement in computing performance that it achieves (see Ta-
ble 1).

4. Forseti design

In this section, we present the design of Forseti and its applica-
bility to any DISC framework. In addition, we explain how Forseti 

2 Similar results are reported in [28,27].
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Table 1
List of symbols.

Symbol Description

T The set of all tasks of a job

Tr The set of all tasks currently processing

T f The set of all idle (finished) tasks

Tw The set of all tasks waiting for resources (JVM)

To The set of all tasks being optimized

S The set of all segments being distributed

Wn The set of segments assigned to task n
τ The current estimated finishing time of all tasks with the new 

rebalancing

Dr
n The unprocessed workload for task n

De
s The processed workload for segment s

Dr
s The unprocessed workload for segment s

Rn The real time process rate of task n
Bn The estimated logical buffer size

ps Progress of segment s
ε Threshold in seconds to terminate Forseti

σ Threshold of progress score at which a task is included for op-
timization

ω Threshold of progress score at which a task is excluded from 
optimization

estimates the execution time of tasks and redistributes workload 
accordingly. Further, relying on Forseti, we propose a greedy algo-
rithm which aims to minimize the job execution time.

4.1. Overview

We design Forseti to be applicable to any multi-phase DISC 
framework. Forseti assumes a job consists of tasks that run on par-
allel unrelated machines. Each task uses data within boundaries, 
reads it as records, generates key-value pairs and passes the pairs 
to the next phase. In addition, Forseti makes no assumption about 
a priori knowledge of the cluster state nor does it require to know 
about job requirements and configuration upon job submission (or 
past runs). Moreover, Forseti exploits “JVM reuse”, and seamlessly 
redistributes data among running tasks without interruption.

Every task in a DISC framework is given a boundary which de-
fines the start and end of a segment (or split) to be processed. 
A task completes when the segment end is reached. Tasks use a 
pointer to specify the start byte offset of a record. The key of a 
record is the byte offset at which it is located, and the value is 
the data present in this record. The pointer is incremented by the 
record size in order to point to the next record. For instance, the 
start byte offset of the first record is 0, and if we assume the first 
record size is 100 KB, the start byte offset of the second record is 
(100 KB + 1B).

Forseti uses the idea of boundaries limits and pointers to spec-
ify the data to be processed by every task. Forseti defines dis-
tributed data as a set of segments, which have start and end byte 
offsets. Upon a job submission, every task is assigned one seg-
ment, and it is roughly the same size for every task. Any part of 
a segment can be specified by a start and end offset. As data is 
redistributed among running tasks periodically upon a new task 
completion, the number of segments assigned and their sizes are 
changing based on the current state of tasks. Forseti creates a log-
ical buffer when optimizing distributed data. The buffer size of 
every task is calculated based on the estimated finishing time. That 
is, the master finds the amount of data that should be assigned to 
every task so that all tasks finish roughly at the same time. This 
data defines the buffer size in bytes.

Fig. 3 explains the concept of segments and how they are cre-
ated and distributed periodically among tasks. Let us suppose we 
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Fig. 3. Segments Creation and Allocation.

Fig. 4. System architecture and steps taken upon new task completion.
have one file of size 300B to be processed. If the configured ini-
tial segment size is 100B, the master launches three tasks, each 
of which processes 100B. The numbers shown on top and bottom 
are the start and end byte offset. At time t , T2 finishes processing 
the assigned data, while T1 and T3 are still processing data. Based 
on the process rate, the master finds that the remaining data from 
T1 can be split into three segments with different sizes. The blue 
dashed rectangle represents the buffer (the estimated data to be 
processed by τ ). The segments are redistributed among the run-
ning tasks, where T1 processes 15B extra, T2 processes 30B and 
T3 finishes processing its data and processes one segment from T1
(5B). Note that the master only sends the start and end byte off-
set to every designated task. Then, the tasks use their pointers to 
point to the start byte offset of a segment achieving online rebal-
ancing.

4.2. Estimating new workload assignment of tasks

Forseti is designed based on the assumption that a priori knowl-
edge of the cluster capability and the submitted jobs configuration 
are unknown. Thus, Forseti has to deal with and adapt to the di-
vergence in the cluster performance. Forseti relies on the real time 
tasks’ progress rate and data remaining to be processed in order to 
estimate the tasks’ finishing time. Moreover, Forseti takes into ac-
count the remaining data of all tasks when rebalancing workload. 
That is, the remaining workload is redistributed among all tasks so 
that the completion time is minimized.

To estimate the new amount of data to be assigned to a task, 
we first need to calculate the estimated finishing time (τ ) consid-
ering the total remaining data and the progress rate of all tasks. τ
is calculated as follows:

τ =
∑|Tr |

n=1 Dr
n

∑|To |
n=1 Rn

(1)

where Dr
n and Rn are the unprocessed workload and progress rate 

of task n, respectively. We use the term buffer to represent the 
logical available space in every task which can be filled with data. 
Once τ is found, the estimated buffer size Bn available for task n
is calculated as follows:
18
Bn = Rn · τ . (2)

The buffer size plays an important role in defining the segments 
limits.

4.3. Proposed dynamic load balancing algorithm

In Forseti, we use a greedy algorithm to fill buffers with data. 
After a job submission, the master launches tasks with a pre-
configured segment (or split) size. Then, the master monitors every 
task and waits for tasks to finish. Every task notifies the master 
upon completion. The master waits for at least one task to finish 
before optimizing workload among tasks. Fig. 4 shows the man-
ner in which the master reacts to a new finished task. Suppose 
that a job is submitted to a cluster and is running. For the sake 
of simplicity, suppose that the job has only three tasks and they 
start running simultaneously. T1, T2 and T3 run on node N1, N2
and N3, respectively. The percentage shown represents the fraction 
of data processed. The master polls the status of every task pe-
riodically and records the progress rate R based on the number 
of bytes processed and elapsed time. Based on the first workload 
assignment, T1 finishes first at t1, while T2 and T3 are still run-
ning. The dashed red rectangle represents the unprocessed data 
Dr

2 and Dr
3 in T2 and T3, respectively. Now, the master needs to 

redistribute the workload in T2 and T3 among all three tasks so 
that all tasks finish roughly at the same time with the new assign-
ment. The master first estimates the finishing time τ of all tasks 
based on the remaining workload and the real time progress rate. 
That is, the master tries to find the amount of data that should 
be given to every task based on its progress rate so that they all 
finish roughly at the same time. The blue dashed rectangle repre-
sents the estimated buffer size after workload taken from T2 and 
T3 is redistributed. Once τ is found, the master notifies every task 
about the new start and end offsets of segments assigned to be 
processed. After the first load rebalancing, T2 finishes first at t2. 
This indicates that T2, which suffers temporal slowdown at t1, is 
able to finish before τ . Now, the master estimates a new finishing 
time τ ′ , and the unprocessed data of T1 is divided among T1 and 
T2 based on the current progress rate, while T3 is left untouched 
as it is about to finish processing. If all tasks are about to finish, 
and no more data can be redistributed, the master checks if there 
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are tasks waiting to be launched. If found, their data gets redis-
tributed in the same manner among running tasks, and they get 
removed from the system. This process eliminates the JVM launch-
ing time overhead and exploits “JVM reuse” of running tasks. This 
optimization is repeated periodically upon a new task completion 
until all tasks finish processing or τ becomes very small. Forseti 
ensures seamless execution throughout the lifetime of a task. Tasks 
only need to point to the right start offset of a segment and con-
tinue processing from there. If a task’s progress rate indicates that 
it can process more data after completion and before τ , the mas-
ter assigns new segments to be processed right after completing 
the current workload.

Algorithm 1: unprocessedSegs().
1: S = {∅}
2: for n ∈ Tr do
3: s = Wn[c] \\c: Current segment being processed
4: \\Check progress of current segment
5: if σ > ps ≥ ω then
6: To .append(n)

7: S.append(Wn[c + 1 :])
8: else if ps < ω then
9: S.append(Wn[c + 1 :]) \\Add all unprocessed segments

10: end if
11: end for
12: for n ∈ To do
13: s = Wn[c]
14: Bn = Rn · τ \\Calculate estimated buffer size for task n
15: \\Add remaining unprocessed workload for segment c
16: if Dr

s − Bn > 0 then
17: κ = s.start + De

s + Bn

18: S.append([κ, s.end])
19: else
20: Bn = Bn − Dr

s
21: end if
22: end for

In order to redistribute data among tasks, we first need to find 
the set of segments S , which includes all non-processed segments 
previously assigned to tasks, as well as the remaining data from 
the current segment being processed that will not be processed 
after τ . We also need to find the set of tasks To which make 
enough progress, and an accurate process rate is recorded. Algo-
rithm 1 explains how segments are collected from running tasks 
(already started processing). Steps (2-10) check the progress of the 
current segment being processed, s, and add all remaining unpro-
cessed segments to S . In our optimization, we only consider tasks 
that make enough progress (more than ω) and there is more than 
σ of data remaining in the current segment. The remaining seg-
ments of the task which is about to finish processing the current 
segment are excluded. Steps (11-20) calculate the buffer size and 
check whether a task can process more data after finishing the 
current segment.

Algorithm 2 works in a greedy manner to fill the logical tasks’ 
buffer with segments. Forseti always prioritizes re-balancing the 
workload of running tasks. The unscheduled tasks, Tw , are only 
considered if there are no segments to be redistributed from the 
running tasks. Steps (1-8) assign the initial segment assigned to 
an unscheduled task to an idle task (a finished task waiting for 
more data to be processed). Once the segment is assigned, the un-
scheduled task gets removed from the cluster. Steps (9-35) assign 
segments from S to all tasks in To , where T f ∪ Tr = To . The algo-
rithm assigns segments to a task until no more space is available 
for data to be processed before τ . If a whole segment cannot be 
assigned to a task, it gets split between two or more tasks. Algo-
rithm 3 shows when Forseti allows tasks to commit their results. If 
τ is less than or equal to a threshold, all tasks commit their results 
and Forseti terminates.
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Algorithm 2: segmentsAssign().
1: if S = {∅} then
2: if Tw �= {∅} then
3: \\Assign unscheduled tasks’ workload to idle tasks
4: for v ∈ min(|Tw |, |T f |) do
5: x = Tw [v]
6: y = T f [v]
7: Wy .append(Wx)

8: end for
9: end if

10: else
11: while To �= {∅} do
12: T0 = To[0]
13: W0 = []
14: while B0 > 0 do
15: s = S[0]
16: y = s.end − s.start\\Data size of segment s
17: while y > 0&B0 > 0 do
18: \\Check if whole segment fits in buffer
19: if B0 ≥ y then
20: W0.append(s)
21: B0 = B0 − y\\Decrease buffer size
22: y = 0
23: S = S − {s}\\Remove segment s from S
24: \\Remove task T0 from To if buffer is filled
25: if B0 == 0 then
26: To = To − {T0}
27: end if
28: else
29: \\Fill the remaining buffer space
30: z = s.start
31: W0.append([z, z + B0])
32: s.start = z + B0

33: y = y − B0

34: To = To − {T0}
35: end if
36: end while
37: end while
38: end while
39: end if

Algorithm 3: commForseti().
1: \\Commit if no more segments in S and no more tasks waiting
2: if S = {∅}&Tw = {∅}&τ > ε then
3: \\Ask every finished task to commit
4: for n ∈ T f do
5: n.commit = true
6: end for
7: else if τ ≤ ε then
8: n.commit = true, ∀n ∈ T
9: end if

5. Forseti implementation

While Forseti works with any distributed computing frame-
work, to evaluate its performance in this paper, we implement 
Forseti using Hadoop YARN, which includes an RM (Resource Man-
ager), an AM (Application Master) for each application (job) as well 
as an NM (Node Manager within each node). The AM negotiates 
resources from the RM and works with the NMs to execute and 
monitor an application’s tasks. Forseti is job-independent, so the 
algorithm is implemented in the AM to estimate τ and redistribute 
workload among all tasks of a job accordingly.

The Forseti load balancing algorithm is centralized and imple-
mented in the AM. The AM keeps tracking the segments assigned 
to every task. The AM runs the algorithm upon a new task finish-
ing. Instead of relying on progress score sent from tasks to AM, 
when load re-balancing is needed, we let the AM poll for the real-
time progress rate from tasks and the current segment being pro-
cessed. We create a new thread for every task which is in charge 
of communicating with the AM and updating it with current status 
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Fig. 5. Comparisons of Forseti, One-to-One, SkewTune and Hadoop in terms of average completion time using three benchmarks: (a) WordCount (b) Classification (c) Adjacency 
List. The heterogeneity level is 1-2-3.
upon request. The outputs of all segments are concatenated before 
a task commits the results and are fetched by reduce tasks.

One challenge confronting us is that when calculating the start 
byte offset of a segment, the AM does not know about the start 
offset of records within a segment. These offset values are only 
known to tasks when processing segments. Because of the result-
ing fraction from Rn and τ , there is no guarantee that the start 
byte offset of a segment always leads to the start byte offset of a 
record. Recall that the start byte offset of a record is the key, and 
the value is the data present in this record. Thus, the start byte 
offset usually points to the value of a record, not the key. There-
fore, we let tasks always skip the first record of new segments and 
point to the start byte offset of the second record upon process-
ing. The skipped part will be the last record to be processed by 
whoever gets assigned the corresponding segment.

6. Evaluation

The performance of Forseti is evaluated on a local cluster as 
well as Amazon EC2 cloud. In this section, we present the evalua-
tion results. We first give a description of the experimental setup, 
and then we show our results comparing Forseti with SkewTune 
and Hadoop. We also compare Forseti with a simple heuristic 
which works as one-to-one mapping. That is, upon completion of a 
new task f , we find the slowest running task l that will finish the 
latest, based on its progress. Then, the remaining data is divided 
among these two tasks such that they both finish at the same time. 
The slow task is notified to process Bl more bytes, while the idle 
task processes the remaining. Bl is calculated as follows:

Bl = Rl · Dr
l

Rl + R f
(3)

where Dr
l , Rl , and R f are the remaining unprocessed data from the 

slow task, the process rate of the slow task and the process rate of 
the idle (finished) task, respectively.

6.1. Experimental setup

Forseti is deployed on a local cluster and Amazon EC2 consist-
ing of 101 nodes - one master and 100 slaves, and 145 nodes -
one master and 144 slaves, respectively. All local servers are con-
nected with a Gigabit Ethernet switch, each of which is Intel(R) 
Xeon(R) CPU E5-2630 v3 @ 2.40 GHz and run on Ubuntu 16.04.6 
LTS operating system. We set ω, σ and ε equal to 5%, 90% and 15 
seconds, respectively. These variables help determine whether the 
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segment currently processed should be included in the optimiza-
tion. If not chosen properly, some segments might get processed 
more than once. Note that the variables can be environment- and 
applications-specific values. We use Docker [31] platform to cre-
ate a cluster with different levels of heterogeneity. In our cluster, 
each node is capable of running one task at a time. Forseti is 
evaluated by using popular benchmarks, TermVector (TV), Word-
Count (WC) and WordMean (WM) as well as Machine Learning 
benchmarks such as Histogram Ratings (HR), Classification (CL) and 
KMeans (KM) clustering benchmarks, and Graph processing bench-
mark such as Adjacency List (AL) [12]. The figures show average 
completion times of 20 jobs as well as the maximum and mini-
mum of these completion times.

6.2. Results

Fig. 5 compares the average completion time of Forseti with 
One-to-One, SkewTune and Hadoop for various job sizes and 
benchmarks. In this figure, we fix the level of heterogeneity to 1-
2-3 ratio (i.e., CPU speeds are 1x, 2x and 3x of a base speed) and 
run jobs with different workload size (i.e., 10G, 30G, 50G and 100G 
bytes of data) one by one and measure the completion time for 
each job. The figures show that Forseti outperforms all strategies 
and reduces the average completion time. The figures also show 
that even with large data size, Forseti is able to exploit the dis-
similarity in progress rate among tasks and redistributes workload 
efficiently. We notice in this figure that the gap between Forseti 
and SkewTune stays roughly the same with different data size, but 
Forseti still provides better results. However, the difference in com-
pletion time between Forseti and Hadoop increases as we increase 
the job size. This demonstrates Forseti’s superiority in dealing with 
large jobs.

In Fig. 6, we compare the average completion time of Forseti 
with One-to-One, SkewTune and Hadoop for different heterogene-
ity levels. In this figure, we fix the job size and run the bench-
marks with various cluster settings, i.e., 1-2, 1-2-3, 1-2-3-4 ratio of 
CPU speed. As in the previous experiment, jobs are presented one 
by one to the system, and the completion time is measured and 
the average taken over all jobs. The two benchmarks, KM and TV, 
process 30G and 10G bytes of data, respectively. Clearly, we can 
see that as we increase the heterogeneity level, Forseti is able to 
maintain a superior performance difference compared with other 
strategies. In this figure, we can see that the gaps with Skew-
Tune and Hadoop keep increasing as we increase the heterogeneity 
level. This is because Hadoop and SkewTune make no assumptions 
about the fluctuation in processing speed in the cluster. The re-
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Fig. 6. Comparisons of Forseti, One-to-One, SkewTune and Hadoop in terms of average completion time using Kmeans and TermVector benchmarks with different level of 
heterogeneity: (a) 1-2 (b) 1-2-3 (c) 1-2-3-4.

Fig. 7. Comparisons of Forseti, One-to-One, SkewTune and Hadoop in terms of average completion time using Histogram Ratings and WordMean benchmarks with different 
job contention levels: (a) Low (b) Medium (c) High.
sults also show that, even with a highly heterogeneous system, 
Forseti shows to be more appealing compared with SkewTune and 
Hadoop. Forseti can adapt and adjust to the current state of a sys-
tem regardless of benchmarks and the discrepancy in progress rate.

In the previous two experiments, jobs were presented one by 
one to the system and did not compete with each other for system 
resources; the only contention for resources is among the tasks 
of the same job. In the next experiment, we allow multiple jobs 
to compete with each other. Here, we present j jobs simultane-
ously to the system and the tasks of these j jobs compete with 
each other. Note that if there are not enough VMs to launch all 
the tasks of these jobs, some will have to be scheduled after other 
tasks finish. We measure the completion time of each job from the 
time the job is presented to the system (i.e., including any waiting 
time for launching the job’s tasks). Fig. 7 presents a comparison 
of the average completion time of Forseti with One-to-One, Skew-
Tune and Hadoop for 3 different contention levels: Low ( j = 2), 
medium ( j = 3), and high ( j = 5) contention levels. In this exper-
iment, we run two benchmarks, HR and WM, which process 30G 
and 10G bytes of data, respectively. The figures show that Forseti 
notably outperforms all baselines and is able to reduce the aver-
age completion time. The figures also show that SkewTune fails to 
perform well at high contention level especially for WM bench-
mark. That is, with high contention level, SkewTune is not able 
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to reduce the completion time of the jobs running on the cluster 
and free resources for the jobs that need them. On the other hand, 
Forseti’s outstanding performance is due to the fact that the pro-
cessing time of jobs is minimized, which makes resources available 
for yet-to-be-scheduled jobs.

Fig. 8 depicts results from experiments on EC2. The figure 
shows the average completion time of Forseti compared with 
One-to-One, SkewTune and Hadoop for different benchmarks with 
300 GB of workload. The results show that, even with large jobs, 
Forseti significantly outperforms all baselines. This improvement 
over other strategies is due to the fact that the assigned segments 
are always reassigned if the AM finds that a new data distribution 
is needed to minimize the completion time.

Table 2 shows the average re-optimization frequency (ARF) and 
the average completion time (ACT) in seconds of Forseti for dif-
ferent workloads, benchmarks and heterogeneity levels. The table 
shows that the re-optimization frequency is directly proportional 
to the total completion time of a job. The table also shows jobs 
with different characteristics and workload sizes require different 
number of re-optimizations, and large job sizes do not always 
provide enough information about jobs. Thus, Forseti makes no 
assumption about the jobs and adapts to the current state of a 
system accordingly.
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Fig. 8. Comparisons of Forseti, One-to-One, SkewTune and Hadoop in terms of av-
erage completion time with 300 GB of workload using Classification, KMeans and 
Histogram Ratings benchmarks on Amazon EC2.

Table 2
Average number of re-optimizations of Forseti for different workloads, benchmarks 
and heterogeneity levels.

ARF ACT(s)

10G (WC) 9 338
50G (WC) 14 568
30G (CL) 6 247
100G (CL) 10 400
1-2 (KM) 5 188
1-2-3 (KM) 6 248
1-2-3-4 (KM) 7 309
1-2 (TV) 5 236
1-2-3 (TV) 7 306
1-2-3-4 (TV) 8 368

7. Conclusion

In this paper, we present Forseti, a dynamic load balancing 
framework that aims to adjust the workload assigned to each task 
periodically according to their processing capability. Forseti makes 
no assumption about the cluster state and optimizes workload 
based on the current tasks’ state. It exploits “JVM reuse” by as-
signing more data to running tasks and avoiding launching new 
tasks. In addition, Forseti does not need to investigate the cause 
of discrepancy in execution time of tasks. We design Forseti to be 
transparent to the map function and require no modification to the 
function design. Our results show that Forseti can significantly re-
duce job completion time by up to 68% on average compared to 
default Hadoop and 50% to SkewTune.

In the future work, we plan to investigate the network usage 
and conduct deep analysis and its impact on the performance. Fur-
thermore, we aim to evaluate how our greedy algorithm scales as 
the complexity increases.
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